豚鼠离体腹腔神经节神经元自发 f-EPSP 和 AP

胡金兰^① 孔 淼^① 黄九龙^① 吴 政^① 王烈成^① 柯道平^① 马 嵘^{①②} 孔德虎^①* (①安徽医科大学生理学教研室神经生理研究室 合肥 230032; ②美国德州北方大学卫生科学中心生理学系 德克萨斯州 76107)

摘要:应用细胞内生物电记录技术观察豚鼠腹腔神经节(CG)神经元自发快兴奋性突触后电位(f-EPSP) 和动作电位(AP)的特征,分析其形成的可能机制。发现在豚鼠离体 CG 上存在自发 f-EPSP 和 AP 发放频 率不同。自发 f-EPSP 的幅度(5.67 ± 2.66)mV(n = 26),明显低于刺激内脏大神经诱发 f-EPSP 的幅度(13.26 ± 6.74)mV(n = 34,P < 0.01),而自发的 AP 后超极化幅度(AHPA)(13.86 ± 4.24)mV(n = 30),明显 高于刺激内脏大神经诱发的 AHPA(8.99 ± 2.79)mV(n = 54,P < 0.01)。六烃季铵或低 Ca²⁺/高 Mg²⁺ Krebs 液能完全阻断自发的 AP,但自发的 f-EPSP 则不被完全阻断。结果提示豚鼠离体 CG 神经元有自发性电 活动,这除与突触前膜 ACh 的随机释放有关以外,可能还有对 Ca²⁺不敏感的其他递质介导。

关键词:自发生物电活动;腹腔神经节;豚鼠

中图分类号: Q42 文献标识码: A 文章编号 10250-3263(2007) 05-14-06

Spontaneous Fast-excitatory Postsynaptic Potential and Action Potential in the Celiac Ganglion Neurons of Guinea-pig *in Vitro*

 $\begin{array}{ccc} \text{HU Jin-Lan}^{\mathbb{O}} & \text{KONG Miao}^{\mathbb{O}} & \text{HUANG Jiu-Long}^{\mathbb{O}} & \text{WU Zheng}^{\mathbb{O}} & \text{WANG Lie-Cheng}^{\mathbb{O}} \\ & \text{KE Dao-Ping}^{\mathbb{O}} & \text{MA Rong}^{\mathbb{O}^{\mathbb{O}}} & \text{KONG De-Hu}^{\mathbb{O}^{\ast}} \end{array}$

(① Laboratory of Neurophysiology ,Dept. of Physiology ,Anhui Medical University ,Hefei 230032 ,China ;

② Department of Integrative Physiology , University of North Texas Health Science Center , Texas 76107 , USA)

Abstract The *in vitro* spontaneous fast-excitatory postsynaptic potential (FEPSP) and spontaneous action potential (AP) were recorded in the celiac ganglion (CG) neurons of Guinea-pig by the intracellular recording technique and the related possible mechanism was analyzed. The spontaneous f-EPSP and AP had different frequencies in the CG neurons. Amplitudes of f-EPSP(13.26 ± 6.74) mV(n = 34) and spontaneous f-EPSP(5.67 ± 2.66)mV(n = 26) were significantly different (P < 0.01). Amplitudes of AHP (8.99 ± 2.79) mV(n = 54) and spontaneous AHP (13.86 ± 4.24)mV(n = 30) were also significantly different (P < 0.01). Spontaneous AP could be blocked by hexamethonium or low Ca²⁺ /high Mg²⁺ Krebs solution ,whereas spontaneous f-EPSP could be partly blocked by the same treatment. The results indicate that spontaneous bioelectricity exists in isolated CG neurons ,and this may be induced by ACh and other calcium-independent neurotransmitters.

Key words Spontaneous bioelectricity ; Celiac ganglion ; Guinea-pig

* 通讯作者 ,E-mail :dehukong@hotmail.com;

第一作者介绍 胡金兰 ,女 ,硕士 ;研究方向 :神经电生理与药理 ;E-mail hjlan1872@hotmail.com。

收稿日期 2007-01-29,修回日期 2007-07-17

基金项目 安徽省教育厅自然科学基金项目(No 2006kj362B);

自发生物电活动可发生在体内部分组织或 器官上 起诱发或改变机体某种生理活动的作 用。这种自发性的电活动通常可发生在大脑皮 层神经元、神经肌肉接头后膜、消化管平滑肌和 心肌细胞上,分别称之为自发脑电、微终板电 位、基本电节律和起搏电位。而腹腔神经节 (celiac ganglion, CG)作为联系高位中枢与外周 效应器活动的中继站,不仅能接受高位中枢下 传的信息 而且还能接受包括来自胃肠道器官 在内的内脏感觉信息传入,在实现高位中枢对 内脏功能活动的调控方面具有初步的整合作 用[1],并有"腹部脑"之称[2]。目前对中枢神经 元^[3]、心肌细胞^[4]、胃肠平滑肌细胞^[5]的自发电 活动研究较多,但对 CG 神经元自发生物电活 动的研究国内外未见报道。最近我们应用离体 神经组织灌流和细胞内微电极记录技术 在豚 鼠 CG 上观察了神经节神经元自发生物电活 动,旨在了解CG神经元自发电活动,并对其形 成的可能机制进行初步分析。

1 材料与方法

1.1 实验动物 健康成年豚鼠,体重 250~350 g 雌雄不拘,由安徽医科大学实验动物中心提供。

1.2 实验方法

1.2.1 神经节标本制备 实验用健康成年豚 鼠 15 只,击后脑致昏迷,经颈总动脉放血致死。 四肢固定,沿正中线剖开腹腔,在下腔静脉和腹 主动脉之间可见一灰白致密组织,即腹腔神经 节 CG。在体视显微镜 XSD-100,蚌埠光学仪器 厂)下,摘取右侧 CG 及其相连的右侧内脏大神 经,并迅速移至灌流浴槽内。在连续变倍体视 显微镜下(XTS-20,北京泰克仪器有限公司)将 其用细针固定在浴槽内的硅胶块上,仔细分离 CG 周围的脂肪和结缔组织,再用粗针沿着神经 节边缘将其均匀地固定,与 CG 相连的内脏大 神经穿入吸引电极内^[6],用于电刺激引导兴奋 性 突 触 后 电 位 (fast-excitatory postsynaptic potential,f-EPSP)和动作电位(action potential, AP)^{7]}。用 95%的 O₂和 5%的 CO₂ 充分饱和的 Krebs 液(35 ~ 36 ℃, pH 7.4)持续、恒速(3 ~ 4 ml/min)灌流^[7,8]。Krebs 液的成分为(mmol/L): NaCl 117, KCl 4.7, MgCl₂ 1.2, NaH₂PO₄ 1.2, CaCl₂ 2.5, 葡萄糖 11.5, NaHCO₃ 26。在此条件下标本 可存活 12 h 以上^[9]。部分实验还使用低 Ca²⁺ / 高 Mg²⁺ Krebs 液,即将 Krebs 液中的 CaCl₂和 MgCl₂ 的浓度调整为 0.25 mmol/L 和 12 mmol/L, 其余成分及浓度同普通 Krebs 液。

1.2.2 细胞内生物电记录 在连续变倍体视 显微镜下,将内充 3 mol/L KCI 溶液,尖端阻抗 为 30~60 MΩ 的玻璃微电极(FHC,USA)通过微 电极操纵仪(MP-2, Narishige, Japan)推进至神经 节表面,再改用步进式微推进器(MO-81, Narishige, Japan)穿刺细胞。所记录的生物电信 号经微电极放大器(Intra-767,WPI,USA)送至生 物信号采集分析系统(Powerlab/4sp, Australia)进 行处理并通过计算机监测和记录。向细胞内注 入的方波电流和刺激节前纤维的刺激信号均由 三通道电子刺激器(SEN-7203, Nihon Kohden, Japan)通过隔离器(SS-202J, Nihon Kohden, Japan)提供。

1.2.3 药物及试剂 六烃季铵(hexamethonium, C₆ 购于 Sigma 公司,其余试剂为国产分析纯。 使用时分别用 Krebs 液配成所需的浓度,经恒流泵灌流给药。

1.2.4 统计学处理 实验数据均以 $\bar{X} \pm S$ 表示,用两样本 t-检验统计处理,所有数据均由分析软件 Sigmaplot 8.0 完成。

2 结 果

2.1 电刺激内脏大神经在 CG 神经元诱发的 f-EPSP 和 AP 电刺激内脏大神经(2.0~8.0 V,1.0 ms,1.0 Hz),在 CG 神经元上可记录到 f-EPSP 和 AP^[6](图 1)。f-EPSP 的幅度和时程分 别为(13.26±6.74)mV 和(45.20±10.60)ms;AP 幅度(action potential amplitude,APA),AP 时程 (action potential duration,APD),后超极化电位幅 度(afterhyperpolarization amplitude,AHPA)和后超 极化电位时程(afterhyperpolarization duration, AHPD)分别为(69.71 ± 15.40)mV、(2.13 ± 0.55)ms、(8.99 ± 2.79)mV和(11.30 ± 0.45)ms(表 1、2)。

图 1 电刺激内脏大神经在 CG 神经元上 诱发的 f-EPSP 和 AP

Fig. 1 f-EPSP and AP induced by stimulating greater splanchnic nerve

A.电刺激(4.0 V, 1.0 ms, 1.0 Hz 下线)内脏大神经诱发的 f-EPSI(上线); B.电刺激(4.0 V, 1.0 s, 1.0 Hz 下线)内脏大神 经诱发的 AI(上线)、(A、B结果取自同一神经元)

A.f-EPSR (upper trace) induced by stimulating (4.0 V, 1.0 ms, 1.0 Hz, lower trace) greater splanchnic nerve; B.AR (upper trace) induced by stimulating (4.0 V, 1.0 ms, 1.0 Hz, lower trace) greater splanchnic nerve. (A and B came from a same neuron)

在灌流液中加入 C₆(10⁻⁴ mol/L)持续灌流 3 min ,AP 完全被抑制 ,但 f-EPSP 未被完全抑 制 ,仍有约 0.3 ~ 1.0 mV ,持续约 40 ms 的去极 化 冲洗后 f-EPSP 及 AP 基本恢复(n = 5)图 2);用低 Ca²⁺ /高 Mg²⁺ Krebs 液持续灌流 3 min , AP 和 f-EPSP 几乎完全被抑制 ,冲洗后 AP 又渐 恢复(n = 3)图 3)。

2.2 CG 神经元自发 f-EPSP 和 AP 实验中发现有些 CG 神经元在没有任何刺激的情况下伴有自发的生物电活动,主要为自发 f-EPSP 和自发 AF(图4)幅度和时程分别见表 1 和表 2,发放频率各不相同(图5)。自发 AP 多发生在微电极刚进入细胞时,也可发生在记录中,实验中所记录的最高发放频率可达 60 Hz 最长持续时间可达 2 min 39 s。而自发 f-EPSP 多出现在记录过程中。

在灌流液中加入 C₆,自发 f-EPSP 仍会出现 (图 6),同时亦可见刺激内脏大神经诱发的 f-EPSP 不能被完全抑制;用低 Ca²⁺/高 Mg²⁺ Krebs 液灌流 CG,自发 AP 被抑制,但自发 f-EPSP 仍 会出现(图 7),同时亦可见刺激内脏大神经诱

图 2 六烃季铵对 f-EPSP 及 AP 的影响 Fig. 2 Effects of hexamethonium on the f-EPSP and AP

A. 上图 在 CG 神经元上诱发的 f-EPSP(垂直短线条)及 AP (垂直长线条);中图 :C₆ 灌流 CG 后 AP 完全被抑制 .f-EPSP 则不完全被抑制;下图 :用 Krebs 液冲洗后恢复; B. 分别对 A 图中的单个 f-EPSP 的快速记录图(潜伏期约 9.2 ms)。

A. Upper : f-EPSP (perpendicular short line) and AP (perpendicular long line) in a CG neuron ; Middle :AP was totally and f-EPSP was partly inhibited by $C_6(10^{-4} \text{ mol/L})$; Lower :The recovery of f-EPSP and AP after washing with Krebs solution ; B. The fast recording of the f-EPSP from A. The latency was about 9.2 ms.

图 3 低 Ca2+ /高 Mg2+ 对 f-EPSP 和 AP 的影响

Fig. 3 Effects of low Ca²⁺ and high Mg²⁺ solution on the f-EPSP and AP

A. 上图:在 CG 神经元上诱发的 AP(长竖线);中图:低 Ca²⁺/高 Mg²⁺ Krebs 液灌流 CG 后 AP 完全被抑制,f-EPSP 也 被抑制;下图:用 Krebs 液冲洗后恢复;B.分别对 A 图中的 单个 AP 的快速记录图(潜伏期约 19.6 ms)。

A. Upper :AP (perpendicular long line) in a CG neuron ; Middle : AP and f-EPSP were inhibited by low Ca^{2+} and high Mg^{2+} solution ; Lower :The recovery of f-EPSP and AP after washing with Krebs solution ; B. The fast recording of the AP from A. The latent period was about 19.6 ms.

发的 AP 和 f-EPSP 完全被抑制。

2.3 CG 神经元自发 f-EPSP、AP 与电刺激内 脏大神经诱发的 f-EPSP、AP 的比较 对 CG 细

图 4 CG 神经元的自发 f-EPSP 和 AP Fig. 4 Spontaneous f-EPSP and AP in a neuron of CG

A.直接胞内去极化电刺激; B.直接胞内去极化电刺激引起的 AP,同时可见自发 f-EPSI(幅度较小且向上的电位变化) 和自发 AP(稀疏垂直的长线条)。

A. The protocol of depolarizing stimulation; B. Bunches of AP were recorded by depolarizing stimulation in a neuron. A few f-EPSP with little changes in potential and spontaneous AP (the discontinous perpendicular long line) also appeared in the neuron.

the spontaneous f-EPSP

用六烃季铵灌流 CG 时出现的自发 f-EPSP(\uparrow 所示) 同时可 见刺激内脏大神经诱发的 f-EPSP 不被完全抑制(\bigtriangleup 所示)。 After superfusion of C₆, there was one spontaneous f-EPSP(\uparrow shows) in a CG neuron , while the f-EPSP(\bigtriangleup shows) induced by stimulating greater splanchnic nerve were partly inhibited.

Fig. 7 Effects of low Ca²⁺ and high Mg²⁺ solution on the spontaneous biological electric activities in the CG neurons

A.用低 Ca²⁺ /高 Mg²⁺ Krebs 液灌流前,在 CG 神经元上记录 到许多自发 AF(△所示为刺激内脏大神经诱发的 AP,其余 为自发 AP); B.用低 Ca²⁺ /高 Mg²⁺ Krebs 液灌流后,自发 AP 完全消失,但仍有自发 f-EPSF(↑所示),同时可见刺激内脏 大神经诱发的 AP 和 f-EPSP 完全被抑制。(A、B 结果取自 同一神经元)

A.Before superfusion of low Ca^{2+} and high Mg^{2+} solution, there were many spontaneous AP in a CG neuron (\bigtriangleup shows the AP induced by stimulating greater splanchnic nerve and the others are spontaneous AP); B. After superfusion of low Ca^{2+} and high Mg^{2+} solution, the f-EPSP and AP induced by stimulating greater splanchnic nerve together with spontaneous AP were totally inhibited, but there were still a few spontaneous f-EPSP(\uparrow shows).(A and B were come from the same neuron)

胞自发 f-EPSP 和诱发 f-EPSP 进行比较,发现两 者幅度变化较大(*P* < 0.01),时程则无显著差 异(表1)。对自发 AP 和诱发 AP 进行比较,发 现两者峰电位幅度(APA),时程(APD)以及超极 化时程(AHPD)无显著性差异,但超极化幅度 (AHPA)差异显著(*P* < 0.01 表 2)。

Table 1 The comparison of characteristics between the spontaneous f-EPSP and the f-EPSP induced by

stimulating greater splanchnic nerve

生物电形式	幅度	时程
Type of bioelectricity	Amplitude ($\rm mV$)	Duration (${\rm ms}$)
快兴奋性突触后电位 f-EPSP(<i>n</i> = 34)	13.26 ± 6.74	45.20 ± 10.60
自发快兴奋性突触后电位 Spontaneous f-EPSP(n = 26)	5.67 ± 2.66 *	48.04 ± 12.93

t-test ,* P < 0.01

α_2 电制励的加入神经防发的 AP 与日及 AP 付证的比较 ($\lambda \pm$	表 2	电刺激内脏大神经诱发的 AP	与自发 AP 特征的比较 ($\overline{X} \pm S$	5)
--	-----	----------------	-------------------------------------	----

Table 2 The comparison of characteristics between the spontaneous AP

and the AP induced by stimulating greater splanchnic nerve

生物电形式	峰电位幅度	峰电位时程	超极化幅度	超极化时程
Type of bioelectricity	APA(mV)	APD (ms)	AHPA (mV)	AHPD (ms)
动作电位 AP(n = 54)	69.71 ± 15.40	2.13 ± 0.55	8.99 ± 2.79	11.30 ± 0.45
自发动作电位 Spontaneous AP(n = 30)	62.65 ± 4.90	2.19 ± 0.24	13.86 ± 4.24 *	13.10 ± 2.34

t-test , * P < 0.01

3 讨 论

神经元及神经纤维的自发性生物电活动可 作为反映其机能状态和活动水平的基础,在实 现神经系统调节其所控制的效应器活动中具有 一定的调制作用。本实验对豚鼠离体 CG 的研 究中发现,在没有任何刺激的条件下,CG内的 神经元表现出较为复杂的自发性电活动 包括 自发 f-EPSP 和 AP 其发放频率各不相同,有些 神经元出现不规则的自发性的 f-EPSP,形成突 触噪声 低频自发放电则多发生在突触噪声的 基础上;有些神经元出现规律的高频放电[10]。 这些自发放电多见于微电极刚进入细胞时 但 有时也会发生在电极进入细胞后的记录过程 中。不但在豚鼠的 CG 神经元 既往的研究发 现在猫离体胰腺神经节细胞也有自发电活 动^{11]}。由于本实验中 CG 已离体,因此自发电 活动的形成可排除脊髓或脑干的影响,认为可 能来自于神经节神经元本身。神经元的这种自 发性电活动的形成可能与对 Ca²⁺ 敏感和不敏 感的自发性突触小泡内 ACh 的量子释放以及 胞浆内 ACh 的漏出有关^[12]。

将静息时 CG 神经元自发 f-EPSP 与刺激内 脏大神经诱发的 f-EPSP 相比较 ,发现两者的时 程无明显差异 ,幅度则差异显著 ,自发 f-EPSP 的幅度明显低于诱发 f-EPSP 的幅度。这可能 与突触囊泡内 ACh 量子释放有关 ,通常于安静 状态下随机发生的量子式 ACh 的释放量比电 刺激内脏大神经所引起突触前的 ACh 量子释 放的量少 ,因此自发 f-EPSP 的幅度较小。但这 种 ACh 的随机少量释放所引起的自发 f-EPSP 对 CG 内神经元的兴奋性却起着重要的调制作 用 ,由此推测 CG 神经元自发 f-EPSP 在正常生 命中可能存在并维持或改变着 CG 神经元的兴 奋性 类似于自发脑电活动。因此本实验结果 也成为外周神经节被称为"腹部脑"的一个证 据。CG 细胞自发 AP 与刺激内脏大神经诱发 的 AP 相比较 ,其 APA、APD 和 AHPD 均无明显 差异 ,但 AHPA 则差异显著。自发的 AHPA 较 刺激内脏大神经引起的 AHPA 大 ,这种超极化 幅度的差别可能与突触后膜上的 K⁺ 通道性状 有关^[13] ,值得进一步研究。

用 C。灌流 CG 发现,无论是自发的 f-EPSP 还是电刺激内脏大神经诱发的 f-EPSP 均表现 不同程度的抑制,但并非完全抑制。这提示两 种不同条件下出现的 f-EPSP 并非只有突触前 膜释放 ACh 作用于后膜的 N₁ 受体而产 生^[14,15],可能还有其他类型的递质参与。用低 Ca²⁺ /高 Mg²⁺ Krebs 液灌流 CG , 电刺激内脏大神 经诱发的 f-EPSP 及 AP 均被完全抑制,说明突 触前膜 ACh 的释放是 Ca²⁺ 敏感的,但自发 f-EPSP 仍可出现,说明突触前膜自发性递质的释 放除了对胞外 Ca²⁺ 内流^[16,17]和胞内钙库释放 钙敏感^{18]}以外 还提示尚有对 Ca²⁺ 不敏感的递 质释放途径参与^[19]。因此推测离体豚鼠 CG 神 经元自发生物电活动除了与对 Ca²⁺ 敏感和不 敏感的 ACh 的自发性释放有关以外,可能还有 其他对 Ca²⁺ 不敏感的递质参与。据文献报道, 单胺类递质如 5-HT 和部分肽类物质如铃蟾肽、 P物质参与介导或调制豚鼠交感神经节细胞迟 慢兴奋性突触后电位^[20] 这些递质或调质是否 也同样参与 CG 神经元自发性 f-EPSP 的形成, 值得讲一步研究。

参考文献

pig inferior mesenteric ganglion neurons in vivo. Acta Physiologica Sinica ,1995 **47**(3) 301 ~ 304.

- [2] Dalsgaard C J, Elfvin L G. Structural studies on the connectivity of the inferior mesenteric ganglion of the guinea pig. J Auton Nerv Syst ,1982 5 (3) 265 ~ 278.
- [3] 吴利平,徐礼鲜,吸入麻醉剂氟烷对大鼠视上核和杏仁 中央核神经元自发放电频率的影响,神经解剖学杂志, 2002,18(3)247~250.
- [4] 张晓云 陈彦静,葛斌贵等.兔动脉前庭自律细胞与窦 房结电生理特性的比较分析.生理学报,2003,55(4): 405~410.
- [5] 张根葆,赵国胜,蒋晓婷.银杏内酯对大鼠胃平滑肌电 活动的作用.中国应用生理学杂志,2000,16(2):185~ 187.
- [6] Wang L C ,Cai S R ,Huang Z X. Serotonin receptor subtypes that depolarize guinea pig inferior mesenteric ganglion neurons. Brain Res ,1999 839(1) 23 ~ 34.
- [7] Mo N , Dun N J , Karczmar A G. Facilitation and inhibition of nicotinic transmission by eserine in the sympathetic ganglia of the rabbit. *Neuropharmacology* ,1985 24 (11):1093~1101.
- [8] Lomax A E ,Mawe G M ,Sharkey K A. Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J Physiol ,2005 ,564(3): 863 ~ 875.
- [9] Dun N J ,Ma R C. Slow non-cholinergic excitatory potentials in neurons of the guinea-pig coeliac ganglia. J Physiol ,1984 , 351 47 ~ 60.
- [10] 陈京红 藤国玺.胞内记录猫体感皮层内脏伤害性感受 神经元的电生理特性.生理学报,1999 51(1)31~37.
- [11] 孔德虎,祝延,马如纯等.离体胰腺神经节的细胞内生物电记录及细胞电生理特性.华西医科大学学报,1994, 25(2):159~165.

- [12] Thesleff S. Spontaneous transmitter release at the neuromuscular junction. Fundam Clin Pharmacol, 1988, 2 (2) 89 ~ 101.
- [13] Atherton J F, Bevan M D. Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons *in vitro*. J Neurosci 2005 25(36) 8 272 ~ 8 281.
- [14] Matsumuro K, Izumo S, Higuchi I, et al. Experimental germanium dioxide induced neuropathy in rats. Actal Neuropathol (Berl), 1993, 86(6) 547 ~ 553.
- [15] Wang N, Orr-Urtreger A, Chapman J. Hidden function of neuronal nicotinic acetylcholine receptor β2 subunits in ganglionic transmission :comparison to α5 and β4 subunits. J Neurol Sci 2005 228(2):167~177.
- [16] Van der Kloot W ,Molgo J. Quantal acetylcholine release at the vertebrate neuromuscular junction. *Physiol Rev*, 1994, 74(4): 899 ~ 991.
- [17] Morimoto T, Popov S, Buckley K M. Calcium-dependent transmitter secretion from fibroblasts: modulation by synaptotagmin I. Neuron, 1995, 15(3) 589 ~ 696.
- [18] Fukuta H, Kito Y, Suzuki H, et al. Spontaneous electrical activity and associated changes in calcium concentration in guinea-pig gastric smooth muscle. J Physiol ,2002 ,540(1): 249 ~ 260.
- [19] Sciancalepore M, Savic N, Gyori J. Facilitation of miniature GABAergic currents by ruthenium red in neonatal rat hippocampal neurons. J Neurophysiol ,1998 ,80(5):2316 ~ 2322.
- [20] 刘芳 柯道平,孔德虎.豚鼠交感神经节非胆碱能迟慢 兴奋性突触后电位与蛙皮素、P物质的关系.动物学杂志 2005 440(1) 27~31.