• 首页关于本刊期刊订阅编委会作者指南过刊浏览
李忠利,陈永祥,胡思玉,赵海涛.2015.四川裂腹鱼和重口裂腹鱼形态差异的多元分析.动物学杂志,50(4):547-554.
四川裂腹鱼和重口裂腹鱼形态差异的多元分析
Multivariate Analysis on the Morphological Differentiation of Kozlov's Schizothoracin (Schizothorax kozlovi) and David's Schizothoracin (Schizothorax davidi)
投稿时间:2014-07-30  修订日期:2015-06-20
DOI:DOI: 10.13859/j.cjz.201504006
中文关键词:  四川裂腹鱼  重口裂腹鱼  形态差异  多元分析
英文关键词:Schizothorax kozlovi  Schizothorax davidi  Morphological variations  Multivariate analysis
基金项目:贵州省教育厅自然科研重点项目(黔教科2006219),贵州省农业科技攻关项目(黔科合NY 字[2008]3);
作者单位E-mail
李忠利 铜仁学院 lzl1982505@163.com 
陈永祥 毕节学院 charles_chen8@sina.com 
胡思玉 毕节学院  
赵海涛 毕节学院  
摘要点击次数: 1246
全文下载次数: 1621
中文摘要:
      通过聚类分析、判别分析和主成分分析3种多元分析方法,对乌江总溪河89尾四川裂腹鱼(Schizothorax kozlovi)和岷江青衣江33尾重口裂腹鱼(S. davidi)的10个常规可量性状与20个框架性状进行了比较研究。聚类分析结果显示,3次采集的四川裂腹鱼聚为一支,而重口裂腹鱼单独为一支;主成分分析结果显示,提取的8个主成分对总方差的累计贡献率为73.762%,贡献率大的性状集中在吻端和躯干后侧;通过两次判别分析,最终建立四川裂腹鱼和重口裂腹鱼两个判别方程,综合判别率为100%。研究结果显示,四川裂腹鱼和重口裂腹鱼是独立的两个种,在形态上的主要差异体现在吻端和躯干后侧,运用多元分析方法能有效地将其区分开来,而3次采样的四川裂腹鱼为同一种群。
英文摘要:
      The schizothoracinae fishes are mainly distributed in the Qinghai-Tibetan plateau and its adjacent regions, most of which turn into important commercial fishery resources in southwest of China. As the wild population decreased quickly, the research of basic biology becomes essential, especially the interspecific morphological classification, which offers scientific data for the fish conservation and utilization. The interspecific and intraspecific morphological variations of 89 specimens from Kozlov's Schizothoracin (Schizothorax kozlovi) in Wujiang River and 33 specimens of David's Schizothoracin (S. Davidi) in Minjiang River were analyzed by three multivariate analysis methods based on 10 traditional morphological parameters and 20 truss network features. The methods of hierarchical cluster analysis consisted of Euclidean distance and between-groups linkage, and the plots of dendrogram showed highest similarity of S. kozlovi from three collections and contrasted with the lowest of S. Davidi (Fig. 2). In principal component analysis of covariance matrix, 8 principal components were extracted with the cumulative contribution rate of the total variance of 72.762%, and the most contributions of characters were focused on snout and posterior torso (Tab. 3). Based on two steps of discriminant analysis by the method of Wilks’ lambda, 122 specimens were finally divided into two groups and the total discriminant accuracy reached 100% (Fig. 4). All results suggested that two fishes were significantly different from each other, and the distinct differences were snout and posterior torso. The samples of S. kozlovi were from the same population, and S. kozlovi and S. davidi could be identified by the three multivariate analysis methods.
附件
查看全文  查看/发表评论  下载PDF阅读器