四川羚牛春季地形选择特征的初步研究
作者:
作者单位:

绵阳师范学院 生态安全与保护四川省重点实验室 绵阳 621000;北京师范大学生命科学学院 生物多样性与生态工程教育重点实验室 北京 100875,动物生态学与保护生物学重实验室 中国科学院动物研究所 北京 100101,四川唐家河国家级自然保护区,四川唐家河国家级自然保护区,四川唐家河国家级自然保护区

基金项目:

国家杰出青年科学基金


Preliminary Study on Sichuan takin(Budorcas taxicolor tibetana) Terrain Characters Preference in Spring
Author:
Affiliation:

Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of life Science, Beijing Normal University, Beijing, 100875, China;,Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China,Tangjiahe national nature reserve,Tangjiahe national nature reserve,Tangjiahe national nature reserve

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    地形是动物栖息地中非常稳定的环境因素。了解有蹄类特殊时期对地形的偏好,既有助于揭示动物行为策略形成的机制,又有助于我们实施保护和管理。本文对羚牛( Budorcas taxicolor tibetana)春季地形选择特征进行了初步探讨,数据来自于 4 只佩戴 GPS 无线电颈圈的羚牛 3 月中旬至 4 月中旬的定位数据。通过羚牛活动位点与可选择地形的 7 个地形因素(坡度、坡向、坡位、海拔、地形起伏度、距峭壁距离、距山脊距离)的比较分析,发现羚牛在春季对地形存在选择。通过因子分析发现,影响羚牛春季地形选择的因素可以分为地形复杂度因子(坡度、地形起伏度),反捕食因子(海拔、距峭壁距离)和坡位因子(坡位)三类因素。 与可供选择地形相比,羚牛利用的地形更偏离峭壁或陡坡、坡度更缓、海拔更低、明显偏离山脊、地形起伏程度较低。羚牛显著倾向于选择平坡和中位坡,且主要选择阴坡和阳坡。雌雄个体在 7 个地形因素的偏好上存在显著的差异,但雌性在距离峭壁和距离山脊的距离以及坡位的选择上与可供选择地形均无显著的差异。

    Abstract:

    Terrain characters are considerable stable components, forming the base of wildlife habitat. To understand terrain preference of ungulates will largely assist management and conservation. Takin (Budorcas taxicolor tibetana) is a large ungulate that inhabit mountains with a rough terrain surface and low elevationarea during spring in Tangjiahe nature reserve. We primarily explored the terrain preference of takin during spring using data from 4 GPS-collared adult takin in period of March to April in 2008 and based on seven topographic factors (i.e. slope, aspect, slope position, elevation, topography ruggedness, distance to cliff, and distance to ridge). We found three groups of terrain factors (topography ruggedness, anti-predation and slope position) influenced takin terrain selection using factor analysis (Table 1). By testing the terrain difference between the sites used and randomly generated points within takin home range during spring, we found takin preferred to the habitat with specified terrain attributes. Takin were found to prefer the habitat with gentle slope, lower elevation, lower terrain ruggedness apart from ridge and cliff. We also found takin to utilize habitat with flat and mid-slope position on sunny slope or shady slope (Fig. 2). Although female were significant different from male on the 7 terrain characteristics , showing a preference to more complex terrain characters, female shown no preference to cliff or slope position selection by comparing with available habitat within its home range. In this study, the significant divergence between sexes on terrain preference may be an indicator of habitat segregation existing within takin population. These results should be incorporated into takin population and habitat management although the sample size was limited due to human disturbance occurred within low elevation area during the study period.

    参考文献
    Abramsky Z, Strauss E, Subach A, et al.1996. The effect of barn owls (Tyto alba) on the activity and microhabitat selection of Gerbillus allenbyi and G. pyramidum. Oecologia, 105:313-319.
    Bailey D W, Gross J E, Laca E A, et al.1996. Mechanisms that result in large herbivore grazing distribution patterns. Journal of Range Management, 49: 386-400.
    Beasom S L, Wiggers E P, GiardinoI J R. 1983. A technique for assessing landscape surface ruggedness. Journal of Wildlife Management, 47:1163-1166.
    Bowyer R T, Kie J G, Van B V. 1998. Habitat selection by neonatal black-tailed deer: climate, forage, or risk of predation? Journal of Mammalogy, 415-425.
    Carbyn L, Trottier T. 1988. Descriptions of wolf attacks on bison calves in Wood Buffalo National Park. Arctic, 41: 297-302.
    Creel S, Winnie J A. 2005. Responses of elk herd size to fine-scale spatial and temporal variation in the risk of predation by wolves. Animal Behaviour, 69: 1181-1189.
    Dasmann W, 1971. If deer are to survive. A Wildlife Management Institute book. Stackpole Books, Harrisburg, 1971.321-344.
    Groves P, Shields G F. 1997. Cytochrome B Sequences Suggest Convergent Evolution of the Asian Takin and Arctic Muskox. Molecular Phylogenetics and Evolution, 8: 363-374.
    Guan T P, Ge B M, McShea W J, et al. 2013. Seasonal migration by a large forest ungulate: a study on takin (Budorcas taxicolor) in Sichuan Province, China. European Journal of Wildlife Research, 59: 81-91.
    Hutchins M, Geist V. 1987. Behavioural considerations in the management of mountain-dwelling ungulates. Mountain Research and Development, 135-144.
    Igota H, Sakuragi M, Uno H, et al. 2004. Seasonal migration patterns of female sika deer in eastern Hokkaido, Japan. Ecological Research, 19: 169-178.
    Kie JG. 1999. Optimal foraging and risk of predation: effects on behavior and social structure in ungulates. Journal of Mammalogy, 1114-1129.
    Lima S L. 1995. Collective detection of predatory attack by social foragers: fraught with ambiguity? Animal Behaviour, 50: 1097-1108.
    Lima S L. 2002. Putting predators back into behavioral predator–prey interactions. Trends in Ecology Evolution, 17: 70-75.
    Lima SL, Bednekoff PA. 1999. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. The American Naturalist, 153: 649-659.
    Mysterud A, ?stbye E.1999. Cover as a habitat element for temperate ungulates: effects on habitat selection and demography. Wildlife Society Bulletin, 385-394.
    Nellemann C, Reynolds P E. 1997. Predicting late winter distribution of muskoxen using an index of terrain ruggedness. Arctic and Alpine Research, 334-338.
    Nellemann C, Thomsen M G. 1994. Terrain ruggedness and caribou forage availability during snowmelt on the Arctic Coastal Plain, Alaska. Arctic, 361-367.
    Suzuki M. 2011. Effects of the topographic niche differentiation on the coexistence of major and minor species in a species-rich temperate forest. Ecological Research, 26: 317-326.
    Ouyang Z, Liu J, Xiao H, et al. 2000. An assessment of giant panda habitat in Wolong Nature Reserve. Acta Ecologica Sinica, 21: 1869-1874.
    Pierce B M, Bowyer R T, Bleich V C. 2004. Habitat selection by mule deer: forage benefits or risk of predation? J Wildlife Manage, 68(3): 533-541.
    Voeten M M, Van De Vijver C A, Olff H, et al. 2010. Possible causes of decreasing migratory ungulate populations in an East African savannah after restrictions in their seasonal movements. African Journal of Ecology, 48:169-179.
    Walker A B, Parker K L, Gillingham M P, et al. 2007. Habitat selection by female Stone's sheep in relation to vegetation, topography, and risk of predation. Ecoscience, 14: 55-70.
    White P J, Davis T L, Barnowe-Meyer K K, et al. 2007. Partial migration and philopatry of Yellowstone pronghorn. Biological Conservation, 135(4): 502-510.
    Zeng Z G, Skidmore A K, Song Y L, et al. 2008. Seasonal altitudinal movements of golden takin in the Qinling Mountains of China. Journal of Wildlife Management, 72(3): 611-617.
    葛桃安 1988. 扭角羚的御敌与护幼.野生动物, 4:30-31.
    麻应太, 李振斌, 吴逊涛,等. 2004. 秦岭动物羚牛越冬栖息地及其特征. 兽类学报, 24(2):93-97.
    宋延龄,曾治高 1999.秦岭羚牛的集群类型.兽类学报, 19(2):81-88.
    吴家炎. 1990. 中国羚牛. 北京: 中国林业出版社.
    黄华梨, 张涛. 1996. 白水江自然保护区羚牛的分别与栖息地特征. 兽类学报, 16(3): 230-230.
    吴鹏举, 张恩迪. 2006. 西藏慈巴沟自然保护区羚牛栖息地选择. 兽类学报, 26(2):152-158.
    曾治高, 钟文勤, 宋延龄. 2003. 羚牛生态生物学研究现状. 兽类学报, 23: 161-167.
    王学志, 宋延龄,曾治高,等. 2005. 羚牛秦岭亚种的产仔地特征及早期母幼关系. 动物学报,51(4):748-752.
    王学志,宋延龄,曾治高,等. 2006. 秦岭雄性羚牛的发情行为与其社会状态的关系 兽类学报,26(1):33-37.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

官天培,谌利民,郑维超,陈万里,宋延龄.2015.四川羚牛春季地形选择特征的初步研究.动物学杂志,50(3):329-336.

复制
文章指标
  • 点击次数:2213
  • 下载次数: 3387
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-12-03
  • 最后修改日期:2015-05-12
  • 录用日期:2015-05-08
  • 在线发布日期: 2015-05-22