海南文昌昌洒荒坡地生境中蜡皮蜥繁殖期家域
作者:
作者单位:

①海南师范大学生命科学学院 海口 571158;,①海南师范大学生命科学学院 海口 571158;②清华大学环境学院 北京 100084;,①海南师范大学生命科学学院 海口 571158;,①海南师范大学生命科学学院 海口 571158;③海南嘉积中学 琼海 571400,①海南师范大学生命科学学院 海口 571158;,①海南师范大学生命科学学院 海口 571158;

基金项目:

国家自然科学基金项目(No. 31260519,30900143)、海南省自然科学基金项目(808151);


Home Range of Reevese′s Butterfly Lizard (Leiolepis reevesii) in the Breeding Season at Barren Slope Habitat of Changsa Town, Wenchang City, Hainan
Author:
Affiliation:

①College of Life Sciences,Hainan Normal University,①College of Life Sciences,Hainan Normal University;②School of Environment, Tsinghua University, Beijing 100084;,①College of Life Sciences,Hainan Normal University,①College of Life Sciences,Hainan Normal University;③Hainan Jiaji Middle School, Qionghai 571400,①College of Life Sciences,Hainan Normal University,①College of Life Sciences,Hainan Normal University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为掌握蜡皮蜥繁殖期家域大小、家域内是否存在核域以及家域和核域的重叠程度,于2010年和2011年3月至5月,在海南文昌荒坡地生境中,应用无线电遥测技术对蜡皮蜥家域进行了研究,采用最小凸多边形、固定核域、线家域等方法分析了13只个体的家域大小和家域重叠度。结果表明:雄性100% MCP家域面积为14091.6±5718.0m2,显著大于雌性253.3±106.5m2(t=4.064, df=11, P=0.002);雄性95% FK和75% FK面积为10707.8±2388.5m2和3282.7±1022.8m2,分别显著大于雌性的379.1±74.1m2(t=7.262, df=11, P<0.001)和172.1±37.9m2(t=5.107, df=11, P<0.001);线家域雄性为205.8±52.5m,显著大于雌性25.0±2.0m(t=5.781, df=11, P=0.034);蜡皮蜥个体家域内核域明显,雄性核域为1380.5±429.1m2,显著大于雌性80.2±18.5m2(t=5.088, df=11, P<0.001),且雄性核域比例为10.9±3.9%,显著低于雌性33.3±6.1%(t=-7.834, df=11, P<0.001);雄性100% MCP面积不仅与头体长(SVL)之间线性相关显著(n=10, r=0.815, P=0.004),而且与体重(BM)之间也具有明显的线性相关(n=10, r=0.683, P=0.029),而雌性只有头体长(SVL)与100% MCP面积之间具有显著相关性(n=3, r=0.998, P=0.044);个体之间具有家域重叠,雄性个体之间100% MCP家域重叠指数为0.26±0.17,显著低于雌性0.66±0.02(t=-3.372, df=34, P=0.002),而雄性个体之间核域重叠指数为0.02±0.02,雌性为0.01。

    Abstract:

    To master the home range size of reevese’s butterfly lizard and whether there exists a core area in each home range and the intrasexual overlap degree of home range and core area during the breeding season, 13 individuals were tracked by radio telemetry in the period of March to May 2010 and 2011 in the barren slope habitat of Wenchang, Hainan Island, China. The home range size and overlap degree of each individuals were calculated by minimum convex polygon (100% MCP) and fixed kernel (95%, 75% and 50% FK) methods. The results indicate that the 100% MCP home range of males (14091.6±5718.0m2) was significantly larger than that of females (253.3±106.5m2)(t=4.064, df=11, P=0.002). Males had significantly larger 95% FK (10707.8±2388.5m2) and 75% FK (3282.7±1022.8m2) home range than females (379.1±74.1m2 and 172.1±37.9m2). The home range length of males (205.8±52.5m) was significantly larger than that of females (25.0±2.0m) (t=5.781, df=11, P=0.034). There existed a apparent core area in the home range for all individuals, males (1380.5±429.1m2) had significantly larger core area than females (80.2±18.5m2) (t=5.088, df=11, P<0.001), and the ratio of core area to 100% MCP home range of males (10.9±3.9%) was significantly lower than that of females (33.3±6.1%) (t=-7.834, df=11, P<0.001). There were significant linear correlations between 100% MCP home range and SVL of males (n=10, r=0.815, P=0.004) and females (n=3, r=0.998, P=0.044), and between 100% MCP home range and body mass of males (n=10, r=0.683, P=0.029). The 100% MCP home range overlap degree of males (0.26±0.17) was significantly lower than that of females (0.66±0.02) (t=-3.372, df=34, P=0.002), and the core area overlap degree of males and females was 0.02±0.02 and 0.01 respectively.

    参考文献
    Atwood T C, Weeks H P Jr. 2003. Spatial home range overlap and temporal interaction in eastern coyotes: the influence of pair types and fragmentation. Canadian Journal of Zoology, 81(9): 1589-1597.
    Burt W H. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammalogy, 24(3):346-352.
    Casta?eda G, Gadsden H, Contreras-Balderas A J, et al. 2007. Viriation in home range of the site-blotched lizard, Uta stejnegerl, in Coanhila, Mexico. Southwestern Association of Naturalists, 52(4):461-467.
    Christian K A, Tracy C R. Porter W P. 1984. Physiological and ecological consequences of sleeping-site selection by the Galapagos land iguana Conoloplzu pallidu. Ecology,65(3):752-758.
    Christian K A, Waldschmidt S. 1984. The relationship between lizard home range and body size: a reanalysis of the data. Herpetologica, 40(1): 68-75.
    De Solla S R, Bonduriansky R, Brooks R J. 1999. Eliminating autocorrelation reduces biological relevance of home range estimates. Journal of Animal Ecology, 68(2):221-234.
    Fox S F, Rose E, Myers R. 1981. Dominance and the acquisition of superior home range in the lizard Uta stansburiana. Ecology, 62(3):888-893.
    Guarino F. 2002. Spatial ecology of a large carnivorous lizard, Varanus varius (Squamata: Varanidae). Journal of Zoology, 258(4):449-457.
    Harestad A S, Bunnel F L. 1979. Home range and body weight- a reevaluation. Ecology, 60(2):389-402.
    Harris S, Cresswell W J, Forde P G, et al. 1990. Home range analysis using radio tracking data - a review of problems and techniques particularly as applied to the study of mammals. Mammal Review, 20(2): 97-123.
    Hayne D W. 1949. Calculation of size of home range. Journal of Mammalogy, 30(1): 1-18.
    Hingrat Y, Jalme M S, Ysnel F et al. 2004. Relationships between home-range size, sex and season with Reference to the mating system of the Houbara Bustard Chlamydotis undulata undulate. Ibis, 146(2):314-322.
    Huey R B, Peterson C R, Arnold S J et al. 1989. Hot rocks and not-so-hot rocks: retreat-site selection by garter snakes and its thermal consequences. Ecology,70(4): 931-944.
    Kaufmann J H. 1983. On the de?nitions and functions of dominance and territoriality. Biological Reviews, 58(1): 1-20.
    Kerr G D, Bull C M. 2006. Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behavioral Ecology, 17(3): 380-391.
    Knapp C R, Owens A K. 2005. An effective new radio transmitter attachment technique for lizards. Herpetological Review, 36(3): 264-266.
    Lin C X, Du Y, Qiu Q B, et al. 2007. Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zoologica Sinica, 53(3): 437-445.
    Lin L H, Ji X, Diong C H,et al. 2010. Phylogeography and population structure of the reevese's butterfly lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution,56 (2):601-607.
    Mace G M and Harvey P H. 1983. Energetic constraints on home-range size (passerines, rodents). American Naturalist,121(1):120-132.
    Milton K, May M L. 1976. Body weight, diet and home range area in primates. Nature,259(5545):459-462.
    Morellet N, Bonenfant C, B?rger L, et al. 2013. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. Journal of Animal Ecology, 82(6): 1326-1339.
    Morreale S J, Gibbons J W, Congdon J D. 1984. Significance of activity and movement in the yellow bellied slider turtle (Pseudemys scripta). Canadian Journal of Zoology , 62(6):1038-1042.
    Perry G, Garland T J. 2002. Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology, 83(7):1870-1885.
    Phillips J A. 1995. Movement patterns and density of Varanus albigularis. Journal of Herpetology, 29(3): 407-416.
    Pianka E R. 1966. Convexity, desert lizards, and spatial heterogeneity. Ecology, 47(6):1055-1059.
    Pluto T G, Bellis D. 1988. Seasonal and annual movements of Riverine map turtles, Graptemys geographica. Journal of Herpetology, 22(2): 152-158.
    Powell R A. 2000. Animal home ranges and territories and home range estimators. Pages 65-110 in Boitani L and Fuller T K, editors. Research techniques in animal ecology: controversies and consequences. Columbia University Press, New York, USA.
    Price-Rees S J, Brown G P, Shine R. 2013. Spatial ecology of blue tongue lizards (Tiliqua spp.) in the Australian wet-dry tropics. Austral Ecology,38(5):493-503.
    Rocha C F D, Frederico C, Rocha D. 1999. Home range of the Tropidurid lizard Liolaemus lutzae: sexual and body size differences. Revista Brasileira De Biologia,59(1): 125-130.
    Rose B. 1982. Lizard’s home ranges: methodology and functions. Journal of Herpetology,16(3):253-259.
    Scholfield J A, Fenner A L, Pelgrim K, et al. 2012. Male-biased movement in pygmy blue tongue lizards: implications for conservation. Wildlife Research, 39(8):677-684.
    Scott-Fair W, Henke S E. 1999. Movements, home range, and survival of Texas horned lizards (Phrynosoma cornutum). Journal of Herpetology, 33(3):517-525.
    Seaman D E, Powell R A. 1996. An evaluation of accuracy of kernel density estimators for home range analysis. Ecology, 77(7): 2075-2085.
    Stamps J A. 1977. Social behavior and spacing patterns in lizards. Pages 265-334 in Gansand C, Tinkle D W editors. Biology of the Reptilia: ecology and behavior. Volume7. Academic Press, NewYork., USA.
    Stamps J A. 1983. Sexual selection, sexual dimorphism, and territoriality. Pages 169-204 in Huey R B, Pianka E R and Schoener T W, editors. Lizard ecology: studies of a model organism. Harvard University Press, Cambridge, Massachusetts, USA.
    Swihart R K, Slade N A. 1985. Influence of sampling interval on estimates of home range size. Journal of Wildlife Management, 49(4):1019-1025.
    Thompson G G, De Boer G G, Pianka E R. 1999. Activity areas and daily movements of an arboreal monitor lizard, Varanus tristis (Squamata: Varanidae) during the breeding season. Australian Journal of Ecology, 24(2): 117-122.
    Trivers R L. 1976. Sexual selection and resource-accruing abilities in Anolis garmani. Evolution,30(2):253-269.
    Turner F B, Jennrich R I, Weintraub J D. 1969. Home ranges and body size of lizards. Ecology, 50(6): 1076-1081.
    Verwaijen D, Damme R V. Wide home ranges for widely foraging lizards. Zoology, 111(1): 37-47.
    Warner D A, Shine R. 2008. Maternal nest-site choice in a lizard with temperature-dependent sex determination. Animal Behaviour, 75(3):861-870.
    Wone B, Beauchamp B. 2003. Movement, home range, and activity patterns of the horned lizard, Phrynosoma mcallii. Journal of Herpetology, 37(4): 679-686.
    Worton B J. 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70(1):164-168.
    洪美玲, 傅丽容, 王力军, 等. 2005. 蜡皮蜥消化系统组织学初步研究. 四川动物, 24(3): 333-336.
    洪美玲, 傅丽容, 王力军, 等. 2011. 雄性蜡皮蜥生殖器官的年周期变化. 安徽农业科学, 39(4): 2260-2264, 2276.
    林炽贤, 邱清波, 林隆慧, 等. 2004. 蜡皮蜥的两性异形和繁殖输出. 动物学研究, 25(6): 477-483.
    彭正强, 黄光斗. 1991. 蜡皮蜥的空间分布型. 热带作物研究, (4):72-74.
    容寿柏, 罗钦洪, 戴绍祥. 1987. 蜡皮蜥的核型. 动物学研究, 8(2): 164,190.
    史海涛, 赵尔宓, 王力军, 等. 2011. 海南两栖爬行动物志. 北京: 科学出版社.
    王力军, 贺斌, 周建芬, 等. 2012. 海南岛沿海蜡皮蜥生境及其致危因素调查. 安徽农业科学,40(6): 3368-3369, 3378.
    王力军, 洪美玲, 蓝丽娟. 2005a. 蜡皮蜥—你离灭绝有多远?.大自然, (4):33-34.
    王力军, 于丰军, 洪美玲, 等. 2005b. 人工饲养条件下蜡皮蜥昼间行为时间分配及活动节律. 四川动物, 24(1): 9-13.
    王力军. 2004. 海岸沙滩上的爬行类—蜡皮蜥. 野生动物, 25 (1): 14-15.
    张冬明, 吴鹏飞, 郝丽红, 等. 2010. 海南文昌市土壤有效磷时空变异特征及环境风险分析. 土壤通报, 41(3): 728-732.
    赵尔宓, 赵肯堂, 周开亚, 等. 1999. 中国动物志—爬行纲( 第二卷). 北京: 科学出版社.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

羊健鼎,陈懋,王力军,周建芬,王成华,胡静.2015.海南文昌昌洒荒坡地生境中蜡皮蜥繁殖期家域.动物学杂志,50(6):855-865.

复制
文章指标
  • 点击次数:2395
  • 下载次数: 3062
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-02-02
  • 最后修改日期:2015-09-29
  • 录用日期:2015-09-25
  • 在线发布日期: 2015-11-24