• 首页关于本刊期刊订阅编委会作者指南过刊浏览
宋文韬,王也,赛那,孙长乐,任娅茹,林荣凤,陈卫,张子慧.2016.典型草原区鹰隼类密度对啮齿动物密度的数值响应.动物学杂志,51(4):529-535.
典型草原区鹰隼类密度对啮齿动物密度的数值响应
Numerical Response of Hawks Density to the Rodents Density in Typical Steppe
投稿时间:2015-10-10  修订日期:2016-06-22
DOI:DOI: 10.13859/j.cjz.201604003
中文关键词:  鹰隼类  啮齿动物  数值反应  捕食  Gompertz方程
英文关键词:Hawk  Rodent  Numerical response  Predation  Gompertz model
基金项目:公益性行业(农业)科研专项经费项目
作者单位E-mail
宋文韬 首都师范大学生命科学学院 wintersong42@live.com 
王也 首都师范大学生命科学学院  
赛那 内蒙古锡林郭勒盟自然保护区  
孙长乐 内蒙古锡林郭勒盟自然保护区  
任娅茹 首都师范大学生命科学学院  
林荣凤 内蒙古锡林郭勒盟阿巴嘎旗疾病预防控制中心  
陈卫 首都师范大学生命科学学院  
张子慧* 首都师范大学生命科学学院 zihuizhang@mail.cnu.edu.cn 
摘要点击次数: 1817
全文下载次数: 2585
中文摘要:
      捕食者与猎物的关系是动物生态学研究的热点之一,捕食者应对猎物密度的变化往往呈现出特定的数值响应特征。为研究典型草原区鹰隼类对其猎物——啮齿动物密度变化的数值响应关系,于2005年7月在内蒙古自治区锡林郭勒盟阿巴嘎旗白音图嘎苏木选取15个实验样地,采用标准夹线法调查了啮齿类密度,同时采用目视方法调查了鹰隼类密度。本次实验共捕获鼠类2 675只,主要为布氏田鼠(Lasiopodomys brandtii),观察到鹰隼类活动450只次。回归分析结果表明,鼠类密度和鹰隼类密度的数值反应关系符合S型曲线,可用Gompertz方程W = 22.765 e - 3.735 e - 0.078 t来拟合,拟合优度R2达0.984,表明鼠类密度对鹰隼类密度有显著影响,验证了Holling所提出的脊椎动物捕食者和猎物数量关系属于S型反应曲线的观点。从本文的结果看,鹰隼类数量对鼠类数量的反应可分为三个阶段:(1)平缓期,随着鼠类密度的逐渐增加,鹰隼类活动频次增长非常缓慢;(2)快速反应期,当鼠类密度达到5只/hm2时,鹰隼类活动频次随鼠类密度的增加迅速增长,期间出现一个增长拐点值;(3)稳定平台期,当鼠类的密度达到40只左右时,鼠类密度虽然继续增加,但鹰隼类活动频次保持稳定,不再增加。本研究可为草原鼠害的天敌控制方法提供参考。
英文摘要:
      The relationship between predator and prey is one of the hot topics in ecological research. To study the quantitative relationship between rodents and hawks in typical steppe, we investigated the density of rodents and hawks at 15 experimental areas in Abagaqi, Xilinguole League, Inner Mongolia during July 2005. By using standard killing trap method, we estimated the density of rodents; at the same time, we observed and counted the density of hawks. Altogether 2 675 rodents were captured, and hawks were observed for 450 times (Table 1). The regression analysis showed that the density of rodents had significantly impact on the density of hawks. This relationship between rodents and hawks, which is in line with the sigmoidal S-shaped curve, can be fitted by Gompertz model, W = 22.765 e - 3.735 e - 0.078 t, goodness-of-fit (R2) is 0.984 (Fig. 1a). The growth of hawks was extremely slow at the initial stage, then rapidly increased to maximal value as the rodent density increase until an inflexion was showed. After then hawk density kept stable (Fig. 1b). This finding is agree with the viewpoint that the numerical response of vertebrate predators to preys could be simulated by the models of Holling-Ⅲ. According to our results, the functional response can be roughly divided into three stages: (1) the steady phase, that the activity of hawks slowly grows as the density of rodents increases; (2) the rapid reaction phase, hawks increase their activiey rapidly as rodents density exceeds 5 ind/hm2; (3) the stable platform phase, the activity frequency of hawks is stable when the density of rodents reaches about 40 ind/hm2 and over. Our results can provide reference for the rodent density controlling by their natural enemies.
附件
查看全文  查看/发表评论  下载PDF阅读器