• 首页关于本刊期刊订阅编委会作者指南过刊浏览
黄岩淦,赵芳,张同作,李生庆,李志宁,林恭华,苏建平.2017.青藏高原5种害鼠D型肉毒素抗性相关基因VAMP1的序列分析.动物学杂志,52(1):42-48.
青藏高原5种害鼠D型肉毒素抗性相关基因VAMP1的序列分析
Variations of a Botulinum Neurotoxin Type D Resistance Related Gene VAMP1 in 5 Rodent Species Endemic to the Qinghai-Tibet Plateau
投稿时间:2016-05-12  修订日期:2016-12-27
DOI:10.13859/j.cjz.201701005
中文关键词:  D型肉毒素  鼠害防治  突触小泡相关膜蛋白1基因(VAMP1)  序列分析
英文关键词:Botulinum neurotoxins type D  Rodent control  Vesicle-associated membrane protein 1 gene (VAMP1)  Sequence analysis
基金项目:青海省科技支撑计划项目(No. 2014-NS-113),青海省科技项目(No. 2014-NS-118);
作者单位E-mail
黄岩淦 中国科学院西北高原生物研究所 huangyangan14@163.com 
赵芳 中国科学院西北高原生物研究所  
张同作 中国科学院西北高原生物研究所  
李生庆 青海省畜牧兽医科学院  
李志宁 青海省畜牧兽医科学院  
林恭华* 中国科学院西北高原生物研究所 lingonghua@nwipb.cas.cn 
苏建平 中国科学院西北高原生物研究所  
摘要点击次数: 2479
全文下载次数: 1933
中文摘要:
      突触小泡相关膜蛋白1基因(VAMP1)的变异是导致鼠类对D型肉毒梭毒素灭鼠剂产生抗性的主要原因。本研究利用转录组测序的方法,分析青藏高原地区5种主要害鼠:高原鼠兔(Ochotona curzoniae)、高原鼢鼠(Eospalax baileyi)、长尾仓鼠(Cricetulus longicaudatus)、青海松田鼠(Neodon fuscus)和喜马拉雅旱獭(Marmota himalayana)的VAMP1序列信息。同时,分别采集来自5个地理种群的58只高原鼠兔和59只高原鼢鼠,对VAMP1基因第二外显子区序列进行分析。结果显示,从转录组组装文件中成功获得5种动物的VAMP1基因全序列,长度均为357 bp,共检测到46个核苷酸变异位点和4个氨基酸变异位点,但未发现与D型肉毒素抗性相关的氨基酸位点。对高原鼠兔群体和高原鼢鼠群体的VAMP1基因第二外显子序列的分析显示,高原鼠兔所有个体的序列高度保守,而在高原鼢鼠中则存在一个同义突变位点,但两物种在D型肉毒素抗性相关位点上都未监测出位点变异。该研究结果提示,D型肉毒杀鼠剂在青藏高原地区害鼠防治方面应该可以长期发挥重要作用。
英文摘要:
      Variants of the rodent vesicle-associated membrane protein 1 gene (VAMP1) play a key role in resistance to botulinum neurotoxin type D (BoNT/D) rodenticide. In this study, we analyzed the VAMP1 gene in five species of rodents, which are endemic to the Qinghai-Tibet Plateau, using transcriptomic methods: Plateau Pika (Ochotona curzoniae), Plateau Zokor (Eospalax baileyi), Lesser Long-tailed Hamster (Cricetulus longicaudatus), Plateau Vole (Neodon fuscus) and Himalayan Marmot (Marmota himalayana). We sequenced the transcriptome of the brain of each species using Illumina HiSeqTM 2000 platform. We then assembled the reads using Trinity program, extracted the VAMP1 coding sequence using blastn program, and finally analyzed their genetic variations using DNAstar and MEGA programs. We also sequenced the second exon of VAMP1 gene of 58 plateau pikas and 59 plateau zokors from five geographical populations using Sanger sequencing methods (Table 1) and analyzed the sequence variations among individuals using MEGA program. We successfully obtained the complete coding sequences of VAMP1 gene of the five QTP animals from transcriptome assemblies. The VAMP1 sequences of all five animal species were 357 bp in length. There were 46 variable sites at the DNA sequence level and four variable sites at the amino acid sequence level among the five Qinghai-Tibet Plateau animals (Table 2, Fig. 1). None of the amino acid residues was identical to that involved in BoNT/D resistance in other animals. We did not detect any variable sites in the second exon of VAMP1 gene of the 58 pikas, and only one synonymous mutation among the 59 zokors was found. Again, we did not detect any BoNT/D resistance mutants in the pikas and zokors. Our study suggests that these rodent species are unlikely to develop resistance to BoNT/D. Based on our results coupled with scientific guidance on usage, the BoNT/D rodenticide can be potentially used in rodent control in the Qinghai-Tibet Plateau.
附件
查看全文  查看/发表评论  下载PDF阅读器