克氏光唇鱼线粒体基因组测定及光唇鱼属的系统发育分析
作者:
作者单位:

海洋动物系统分类与进化上海高校重点实验室,海洋动物系统分类与进化上海高校重点实验室,海洋动物系统分类与进化上海高校重点实验室,海洋动物系统分类与进化上海高校重点实验室

基金项目:

国家科技基础性工作专项(No. 2015FY110200)


Complete Mitochondrial Genome of Acrossocheilus kreyenbergii, with Phylogenetic Analysis of Genus Acrossocheilus
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    根据侧条光唇鱼(Acrossocheilus parallens)线粒体基因(mtDNA)序列设计引物,采用引物步移和PCR扩增产物测序,获得了克氏光唇鱼(A. kreyenbergii)的mtDNA全序列。结构分析表明,克氏光唇鱼mtDNA为首尾闭合的环状基因,全长16 596 bp,编码37个基因,包括13个蛋白编码基因、22个tRNA基因、2个rRNA基因和两段非编码区(D-loop和轻链复制起点OL),碱基组成具有明显的A + T偏好和反G偏倚现象。13个蛋白编码基因中,除COⅠ的起始密码子是GTG,其余基因的起始密码子均为ATG;终止密码子包括完全的终止密码子TAA(38.46%)和TAG(7.69%),不完全的终止密码子TA(15.38%)和T(38.46%)。在D-loop区的811 ~ 837 bp区间发现了一段“TA”短串联重复序列。从蛋白编码基因所包含的信息量、变异位点和变异率看,ND5、ND4、COⅠ和ND2最适合作为光唇鱼属种间系统发育分析的分子标记。采用贝叶斯法利用13个蛋白编码基因所构建的系统发育树显示,光唇鱼属和白甲鱼属(Onychostoma)的24种鱼类各自没有聚为单系群,相互间不能明确区分。

    Abstract:

    According to the existing mitochondrial gene sequence of Acrossocheilus parallens, primers were designed, and by using the method of primer walking and PCR amplification, mitochondrial genome sequence of A. kreyenbergii was obtained, and its structure was analyzed. The results showed that the complete mitochondrial genome of A. kreyenbergii was a circular genome, 16 596 bp in length, including 13 protein coding genes, 22 tRNA genes, 2 rRNA genes and two non-coding regions (D-loop and origin of light strand replication, OL). The base composition showed two features, the negative bias for G and AT bias. All protein-coding genes started with ATG as an initiation codon except COⅠ, which used GTG. Two complete termination codons were TAA (38.46%) and TAG (7.69%), and two incomplete stop codons were TA (15.38%) and T (38.64%). A control region of 941 bp in length between tRNAPro and tRNAPhe, a short tandem repeat TA, was found in the 811﹣837 bp intervals. From the information contained in the protein coding gene, the mutation site and the mutation rate of view, ND5, ND4, COⅠ and ND2 were the most suitable molecular markers for interspecific phylogenetic analysis of Acrossocheilus. The phylogenetic tree constructed by Bayesian method for 13 protein coding genes showed that 23 species of Acrossocheilus and Onychostoma were not clustered into monophyletic groups, and could not be clearly distinguished from each other.

    参考文献
    [1]Bernt M, Bleidorn C, Braband A, et al. 2013. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny.[J]. Molecular Phylogenetics Evolution, 69(2):352-364.
    [2]Burland T G. 1999. DNASTAR’s Lasergene Sequence Analysis Software[M]// Bioinformatics Methods and Protocols. Humana Press, 71-91.
    [3]Günther,A.1896 .Report on the collections of reptiles, batrachians and fishes made by Messrs. Potanin and Berezowski in the Chinese provinces Kansu and Sze-chuen. Ezhegodnik, Zoologicheskago Muzeya Imperatorskoi Akademii Nauk 1896, v.1 (no.3): 199-219, Pls. 1-2.
    [4]Chan J, Li W, Hu X, et al. 2016. Genetic diversity and population structure analysis of Qinghai-Tibetan plateau schizothoracine fish ( Gymnocypris dobula ) based on mtDNA D-loop sequences[J]. Biochemical Systematics Ecology, 69:152-160.
    [5]Clayton D A, 1982. Replication of animal mitochondrial DNA. Cell, 28(4): 693-705
    [6]Cui Z X, Liu Y, Li C P et al, 2009. The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene, 432: 33-43.
    [7]Froese, R. Pauly, D. 2015. FishBase. World Wide Web electronic publication. Available from: http://www.fishbase.org/ (accessed 18 September 2015)
    [8]Hall, T.A., 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98) NT. Nucl. Acids. Symp. Ser. 41,95-98.
    [9]Kumar S, Stecher G, Peterson D, et al. 2012. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis[J]. Bioinformatics, 28(20):2685.
    [10]Li J, Wang X, Kong X, et al. 2008. Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei : Cypriniformes)[J]. Molecular Phylogenetics Evolution, 47(2):472-487.
    [11]Liu Y,Cui Z. 2009. The complete mitochondrial genome sequence of the cutlassfish Trichiurus japonicus (Perciformes: Trichiuridae) : genome characterization and phylogenetic considerations[J]. Mar Genomics, 2 (2):133-142.
    [12]Matthias Bernt, Anke Braband, Bernd Schierwater, et al. 2016. Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69(2): 328–338.
    [13]Ojala D, Montoya J, Attardi G, 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470-474
    [14]Ojala D, Merkel C, Gelfand R, et al. 1980. The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA.[J]. Cell, 22(2):393-403.Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818.
    [15]Rambaut,A. , 2012. Figtree Version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/
    [16]Ronquist F, Teslenko M, van der Mark P, et al. 2012. Mr Bayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 61(3): 539-542.
    [17]Tanaka M, Ozawa T, 1994. Strand asymmetry in human mitochondrial DNA mutations. Genomic, 22(2): 327-335
    [18]Thompson, J.D., Gibson, T.J., Plewniak, F., et al. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res. 25, 4876-4882.
    [19]Wang J P, Kc C T H. 2000. Mitochondrial DNA phylogeography of Acrossocheilus paradoxus (Cyprinidae) in Taiwan[J]. Molecular Ecology, 9(10):1483-1494.
    [20]Wolstenholme D R. 1992. Animal mitochondrial DNA: structure and evolution.[J]. International Review of Cytology, 141(6):173.
    [21]Wang X, Li J, He S. 2007. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences[J]. Molecular Phylogenetics Evolution, (42):157-170.
    [22]Wu X, Xu X, Yu Z, et al. 2010. Comparison of seven Crassostrea mitogenomes and phylogenetic analyses[J]. Molecular Phylogenetics Evolution, 57(1):448-454.
    [23]Yang L, Sado T, Vincent H M, et al. 2015. Phylogeny and polyploidy: resolving the classification of cyprinine fishes (Teleostei: Cypriniformes)[J]. Molecular Phylogenetics Evolution, 85:97.
    [24] Yuan,L.Y.,Z.Q. Wu and E. Zhang,2006.Acrossocheilus spinifer,a new species of barred cyprinid fish from south China (Pisces: Teleostei). J. Fish Biol. 68(Suppl. B):163-173.
    [25]Yuan L Y, Liu X X, Zhang E. 2015. Mitochondrial phylogeny of Chinese barred species of the cyprinid genus Acrossocheilus Oshima, 1919 (Teleostei: Cypriniformes) and its taxonomic implications[J]. Zootaxa, 4059(1):151.
    [26]Zang X, Yin D, Wang R, et al. 2015. Complete mitochondrial DNA sequence and phylogenic analysis of Oxyeleotris lineolatus (Perciformes, Eleotridae)[J]. Mitochondrial Dna, (4).
    [27]Zheng L P, Yang J X, Chen X Y. 2016. Molecular phylogeny and systematics of the Barbinae (Teleostei: Cyprinidae) in China inferred from mitochondrial DNA sequences[J]. Biochemical Systematics Ecology, 68:250-259.
    [28]陈四海, 区又君, 李加儿. 2011. 鱼类线粒体DNA及其研究进展[J]. 生物技术通报, (3):13-20.
    [29]单乡红, 林人端, 乐佩琦,等. 2000. 见:乐佩琦主编. 中国动物志,硬骨鱼纲, 鲤形目 (下卷). 北京:科学出版社, 100-103.
    [30]郭新红, 刘少军, 刘巧等. 2004. 鱼类线粒体DNA研究新进展[J]. 遗传学报, 31(9):983-1000.
    [31]黄少涛. 1984. 鲃亚科, 见福建鱼类志(上册) (朱元鼎主编). 福州: 福建科学技术出版社, 337-338.
    [32]林人端. 1989. 鲃亚科, 见珠江鱼类志(郑慈英等主编). 北京: 科学出版社, 438.
    [33]刘连为, 许强华, 陈新军. 2012. 基于线粒体COI和Cytb基因序列的北太平洋柔鱼种群遗传结构研究[J]. 水产学报, 36(11):1675-1684.
    [34]刘思情, 张家波, 唐琼英,等. 2010. 基于ND4和ND5基因序列分析的鳅超科鱼类系统发育关系[J]. 动物学研究, 31(3):221-229.
    [35]吕国庆, 李思发. 1998. 鱼类线粒体DNA多态研究和应用进展[J]. 中国水产科学, 5(3):94-103.
    [36]世勋. 1981. 鲃亚科. 见广西淡水鱼类志(郑,葆珊主编). 南宁: 广西人民出版社, 67—111.
    [37]王中铎, 郭昱嵩, 陈荣玲,等. 2009. 南海常见硬骨鱼类COI条码序列[J]. 海洋与湖沼, 40(5):608-614.
    [38]伍献文等. 1977. 中国鲤科鱼类志 (下卷). 上海: 上海人民出版社, 272-298.
    [39]肖武汉, 张亚平. 2000. 鱼类线粒体DNA的遗传与进化[J]. 水生生物学报, 24(4):384-391.
    [40]杨丽萍, 卢迈新, 叶星等. 2010. 尼罗罗非鱼线粒体基因组全序列测定与系统进化分析[J]. 中国生物化学与分子生物学报, 26(5) : 484 -490.]
    [41]赵凯. 2006. 鱼类线粒体DNA(mtDNA)及其在分子系统学中的应用[J]. 青海大学学报, 24(2): 49-53.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨杨,宋小晶,唐文乔,张亚.2018.克氏光唇鱼线粒体基因组测定及光唇鱼属的系统发育分析.动物学杂志,53(2):207-219.

复制
文章指标
  • 点击次数:1978
  • 下载次数: 3732
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-07-19
  • 最后修改日期:2018-03-02
  • 录用日期:2018-03-01
  • 在线发布日期: 2018-03-30