斑头雁成鸟与雏鸟泄殖腔微生物的对比分析
作者:
作者单位:

①中国科学院西北高原生物研究所,②青海大学省部共建三江源生态与高原农牧业国家重点实验室,③青海大学生态环境工程学院,①中国科学院西北高原生物研究所,①中国科学院西北高原生物研究所,①中国科学院西北高原生物研究所

基金项目:

国家重点基础研究发展计划项目(No. 2010CB530301)


Comparative Analysis of the Cloacal Microbiome of both Adult and Chick Bar-Headed Geese (Anser indicus)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肠道微生物通过维持稳态、辅助消化和促进免疫系统发育等方式维护宿主的健康状态。肠道微生物本身则受到宿主的基因、饮食、年龄和环境等因素的影响。然而,肠道微生物的变化与宿主年龄之间的关系仍有许多未知。本研究分别收集斑头雁(Anser indicus)2只成鸟及3只雏鸟泄殖腔样品,提取肠道微生物总DNA,采用16S rRNA高通量测序的方法,分析并比较两年龄阶段鸟类肠道微生物的菌群结构及组成差异。研究发现,斑头雁雏鸟泄殖腔微生物属于9个门,含量最高的前5个门分别是梭杆菌门(48.29%)、厚壁菌门(22.21%)、变形杆菌门(22.07%)、放线菌门(5.02%)和软壁菌门(1.93%)。成鸟泄殖腔微生物属于17个门,最多的依次是变形菌门(64.69%)、厚壁菌门(23.92%)、蓝细菌(8.48%)、放线菌门(1.43%)和梭杆菌门(0.56%)。在属的水平,斑头雁雏鸟泄殖腔微生物属于18个属,而成鸟含有24个属。成鸟泄殖腔微生物的α多样性显著高于雏鸟(P < 0.05,Welch′s t-test)。有186个操作分类单元(OTU)属于成鸟和雏鸟共有,而其他640个OTU和90个OTU则分别隶属于成鸟和雏鸟。雏鸟中67.39%的OTUs是成鸟所具有的。基于OTU的聚类结果与年龄分组一致。本结果对认识鸟类肠道微生物与宿主年龄变化之间的关系有一定的参考价值。

    Abstract:

    Gastrointestinal bacteria contribute to host health by maintaining homeostasis, increasing digestive efficiency, and facilitating the development of the immune system. Host genetics, diets, ages and environments strongly influence the composition of the gut microbiota. However, changes in microbial community structure with host age remain poorly understood. In this study, collected 2 adults and 3 chicks Bar-headed Geese (Anser indicus) cloacal samples, extract total DNA samples, and using 16S rRNA high-throughput sequencing, analysis and comparison the difference of composition and flora structure. According to analysis the intestinal microflora of adult and chick of bar-headed geese, to observed the dynamic changes of different age stage of bird intestinal microflora. A total of 9 different bacterial phyla were identified in the cloacal microbiota of chicks (Fig. 1a). The results showed that Fusobacteria predominated (48.29%) among chicks followed by Firmicutes (22.21%), Proteobacteria (22.07%), Actinobacteria (5.02%) and Tenericutes (1.93%) (Table 2). A total of 17 different bacterial phyla were identified in the cloacal microbiota of adults (Fig. 1a). The top 5 most abundant phyla identified were: Proteobacteria (64.69%), Firmicutes (23.92%), Cyanobacteria (8.48%), Actinobacteria (1.43%) and Fusobacteria (0.56%) (Table 2). At the genus level, the sequences from the samples represented 18 and 24 genera in chicks and adults, respectively (Fig. 1b). We employed Chao1 index and observed species curve to estimate the alpha diversity of the chicks and adults cloacal samples. These results suggested that the diversity of the cloacal microbiota of adult bar-headed geese was higher than in chicks. Analyses based on Bray-Curtis distances revealed strong clustering of the samples by age (Fig. 3a). At the OTU level, there were 186 OTUs shared between the samples from adults and chicks, whereas the other 640 OTUs and 90 OTUs, were specific to the adults and chicks, respectively (Fig. 3b). These results indicated that majority of OTUs (67.39%) presented in the chicks were also presented in the adults. The top 25 most abundant OTUs at the genus level shared by both adults and chicks were shown in Fig. 4. This preliminary study would be valuable for future investigations of the sequential changes in gut microbiota composition with age in birds.

    参考文献
    Ahern P P, Faith J J, Gordon J I. 2014. Mining the human gut microbiota for effector strains that shape the immune system. Immunity, 40: 815-823.
    Barbosa A, Balague V, Valera F, et al. 2016. Age-Related Differences in the Gastrointestinal Microbiota of Chinstrap Penguins (Pygoscelis antarctica). PloS one, 11: e0153215.
    Bennett D C, Tun H M, Kim J E, et al. 2013. Characterization of cecal microbiota of the emu (Dromaius novaehollandiae). Veterinary Microbiology, 166: 304-310.
    Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114-2120.
    Caporaso J G, Bittinger K, Bushman F D, et al. 2010. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 26: 266-267.
    Colston T J , Jackson C R. 2016. Microbiome evolution along divergent branches of the vertebrate tree of life:what is known and unknown.SMolecular Ecology, 25: 3776-3800.
    DeSantis T Z, Hugenholtz P, Larsen N, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.Applied Environmental Microbiology, 72: 5069-5072.
    Dewar M L, Arnould J P, Dann P, et al. 2013. Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen, 2: 195-204.
    Edgar R C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996-998.
    Eisen J. 2015. What does the term microbiome mean? And where did it come from? A bit of a surprise, Winnower, 2: e142971-16196.
    Feare C J, Kato T , Thomas R. 2010. Captive rearing and release of Bar-headed Geese (Anser indicus) in China: a possible HPAI H5N1 virus infection route to wild birds. J Wildl Dis, 46: 1340-1342.
    Flammer K, Drewes L A. 1988. Species-related differences in the incidence of gram-negative bacteria isolated from the cloaca of clinically normal psittacine birds. Avian Diseases, 32: 79-83.
    González-Braojos S, Vela A I, Ruiz-De-Casta?eda R, et al. 2012.Age-related changes in abundance of enterococci and Enterobacteriaceae, in Pied Flycatcher (Ficedula hypoleuca) nestlings and their association with growth. Journal of Ornithology, 153(1):181-188.
    Hird S M, Carstens B C, Cardiff S W, et al. 2014. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ, 2: e321.
    Jovel J, Patterson J, Wang W, et al. 2016. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Frontiers in Microbiology. 7: 459.
    Kau A L, Ahern P P, Griffin N W, et al. 2011. Human nutrition, the gut microbiome and the immune system. Nature, 474: 327-336.
    Kinross J M, Darzi A W, Nicholson J K. 2011. Gut microbiome-host interactions in health and disease. Genome Medicine, 3: 14.
    Kohl K D. 2012. Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B Biochemical Systemic Environmental Physiology, 182: 591-602.
    Kuczynski J, Stombaugh J, Walters W A, et al. 2012. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics Chapter 1 Unit 1E 5.
    Lavoie E T, Sorrell E M, Perez D R, et al. 2007. Immunosenescence and age-related susceptibility to influenza virus in Japanese quail.Developmental Comparative Immunology, 31: 407-414.
    Lee W J, Hase K. 2014. Gut microbiota-generated metabolites in animal health and disease.Nature Chemical Biology, 10: 416-424.
    Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Medicine, 8: 51.
    Magoc T, Salzberg S L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957-2963.
    Malmuthuge N, Griebel P J, Guan L. 2015. The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract. Frontiers in Veterinary Science, 2: 36.
    McFall-Ngai M, Hadfield M G, Bosch T C, et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110: 3229-3236.
    Middleton B A, AG van der Valk. 1987. The food habits of greylag and bar-headed geese in the Keoladeo National Park, India. Wildfowl, 38: 94-102.
    O'Mahony S M, Clarke G, Borre Y E, et al. 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277: 32-48.
    Pan D, Yu Z. 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 108-119.
    Panda A K, Rao S V R, Raju M V L N, et al. 2009. Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens. Asian Australasian Journal of Animal Sciences, 22: 1026-1031.
    Price M N, Dehal P S, Arkin A P. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PloS one, 5: e9490.
    Pylro V S, Mui T S, Rodrigues J L, et al. 2016. A Step Forward to Empower Global Microbiome Research Through Local Leadership. Trends in Microbiology, 24: 767-771.
    Roggenbuck M, B?rholm S I, Blom N, et al. 2015.The microbiome of New World vultures. Nature Communications, 5:5498.
    Schloss P D, Westcott S L, Ryabin T, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied Environmental Microbiology, 75: 7537-7541.
    Stulberg E, Fravel D, Proctor L M, et al. 2016. An assessment of US microbiome research. Nature Microbiology, 1: 15015.
    Takekawa J Y, Heath S R, Douglas D C, et al. 2012. Geographic variation in Bar-headed Geese Anser indicus: Connectivity of wintering areas and breeding grounds across a broad front. Wildfowl, 59: 100-123.
    Van Dongen W F, White J, Brandl H B, et al. 2013. Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecology, 13: 11.
    Vasileiadis S, Puglisi E, Arena M, et al. 2012. Trevisan M, Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PloS one, 7: e42671.
    Waite D W, Eason D K, Taylor M W. 2014. Influence of hand rearing and bird age on the fecal microbiota of the critically endangered kakapo. Applied Environmental Microbiology, 80: 4650-4658.
    Waite D W, Taylor M W. 2014. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 5: 223.
    Waite D W, Taylor M W. 2015. Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 6: 673.
    Wang Q, Garrity G M, Tiedje J M, et al. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environmental Microbiology, 73: 5261-5267.
    Wang W, Cao J, Li J R, et al. 2016. Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing. Microbiological Research, 182: 59-67.
    Wang W, Cao J, Yang F, et al. 2016. High-throughput sequencing reveals the core gut microbiome of Bar-headed goose (Anser indicus) in different wintering areas in Tibet. MicrobiologyOpen, 5: 287-295.
    Xenoulis P G, Gray P L, Brightsmith D, et al. 2010. Molecular characterization of the cloacal microbiota of wild and captive parrots. Veterinary Microbiology, 146: 320-325.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑思思,王稳,王爱真,孙浩,杨芳,王雪莲,李来兴.2018.斑头雁成鸟与雏鸟泄殖腔微生物的对比分析.动物学杂志,53(4):641-651.

复制
文章指标
  • 点击次数:1336
  • 下载次数: 1974
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-11-07
  • 最后修改日期:2018-06-27
  • 录用日期:2018-06-21
  • 在线发布日期: 2018-07-16