不同食物及食物密度对盐蚕豆虫 种群动力学特征的影响
作者:
作者单位:

1.①天津农学院水产学院;2.天津农学院水产学院;3.天津市水产生态及养殖重点实验室

基金项目:

天津市自然科学基金项目(No. 17JCYBJC29800,15JCYBJC23900),天津市高等学校创新团队培养计划项目(No. TD13-5089),中国海洋大学海水养殖教育部重点实验室开放课题(No. KLM2018003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究不同食物及食物密度对盐蚕豆虫(Fabrea salina)种群动力学的影响。本文采用商业酵母和杜氏藻(Dunaliella salina)两种不同类型的饲料喂食盐蚕豆虫,探究其种群动力学特征。结果表明,杜氏藻组的盐蚕豆虫具有较高的生长率[(0.78 ± 0.019)/d]、较低的世代时间[(0.89 ± 0.021)d],内禀生长率为1.49/d,米氏常数值为1 121.32;商业酵母组生长率较低[(0.36 ± 0.001)/d],世代时间较长[(1.93 ± 0.007)d],内禀生长率为0.51/d,米氏常数值为2.68。One-way ANOVA检验结果表明,食物及食物密度对盐蚕豆虫的种群生长均有极显著影响(P < 0.01)。以密度为10 × 109 cells/L的杜氏藻投喂,可在短时间内实现盐蚕豆虫的高密度培养和利用,而酵母适用于实验室中盐蚕豆虫的保种工作。

    Abstract:

    The purpose of this paper is to investigate the effects of different food and food densities on the population dynamics of Fabrea salina. Commercial yeast and Dunaliella salina were provided to the F. salina. The F. salina fed by D. salina had the higher growth rate (0.78 ± 0.019 / d), and lower generation time (0.89 ± 0.021 d). Its intrinsic growth rate is 1.49/d, and the Michaelis constant was 1 121.32. However, the growth rate of F. salina fed by commercial yeast was lower (0.36 ± 0.001 / d), and the generation time was longer (1.93 ± 0.007 d); its intrinsic growth rate was 0.51/d and the Michaelis constant was 2.68. One-way ANOVA test results showed that the kind of food and food density had a significant effect on the population growth of F. salina (P < 0.01). Feeding F. salina by D. salina with a density of 10 × 109 cells/L can achieve high-density culture in a short period of time. While, yeast is suitable to feed F. salina to keep them in the laboratory for longer time.

    参考文献
    Barnabé G. 1974. Mass Rearing of the Bass Dicentrarchus labrax L. // Blaxter J H S. The Early Life History of Fish. Springer Berlin Heidelberg, 749–753. Broach J S, Cassiano E J, Watson C A. 2017. Baseline culture parameters for the cyclopoid copepod Oithona colcarva: a potential new live feed for marine fish larviculture. Aquaculture Research, 48(8): 4461– 4469. Lee I S, Ohs C L, Broach J S, et al. 2018. Determining live prey preferences of larval ornamental marine fish utilizing fluorescent microspheres. Aquaculture, 490: 125–135. Montagnes D J S. 1996. Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Advances in Microbiology, 130(1): 241–254. Morris R M. 1956. Some Aspects of the Problem of Rearing Marine Fishes. San Francisco: Department of Biological Sciences, Stanford University, Ph. D Thesis, 26–110. Mukai Y, Sani M Z, Mohammad-Noor N, et al. 2016. Effective method to culture infusoria, a highly potential starter feed for marine finfish larvae. International Journal of Fisheries and Aquatic Studies, 4(3): 124–127. Pandey B D. 2001. Ecology, Biology and Culture Aspects of Fabrea salina. Mumbai: University of Mumbai Doctoral dissertation, Ph. D. Thesis. Pandey B D, Yeragi S G. 2004a. Preliminary and mass culture experiments on a heterotrichous ciliate, Fabrea salina. Aquaculture, 232(1/4): 241–254. Pandey B D, Yeragi S G, Pal A K. 2004b. Nutritional value of a heterotrichous ciliate, Fabrea salina with emphasis on its fatty acid profile. Asian Australasian Journal of Animal Sciences, 17(7): 995–999. Rasdi N W, Qin J G. 2016. Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquaculture Research, 47(1): 1–20. Reid A H, Sprules W G. 2018. A comprehensive evaluation of Daphnia pulex foraging energetics and the influence of spatially heterogeneous food. Inland Waters, 8(1): 50–59. Rhodes M A, Phelps R P. 2008. Evaluation of the ciliated protozoa, Fabrea salina as a first food for larval red snapper, Lutjanus campechanus in a large scale rearing experiment. Journal of Applied Aquaculture, 20(2): 120–133. Salt J L, Bulit C, Zhang W. et al. 2017. Spatial extinction or persistence: landscape‐temperature interactions perturb predator- prey dynamics. Ecography, 40(10): 1177–1186. Song W, Packroff G. 1997. Taxonomy and morphology of marine ciliates from China with description of two new species, Strombidium globosaneum nov. spec. and S. platum nov. spec. (Protozoa, Ciliophora). Archiv für Protistenkunde, 147(3/4): 331–360. Song W, Warren A, Ji D, et al. 2003. New contributions to two heterotrichous ciliates, Folliculina simplex (Dons, 1917), Condylostoma curva Burkovsky, 1970 and one licnophorid, Licnophora lyngbycola Fauré–Fremiet, 1937 (Protozoa, Ciliophora): descriptions of morphology and infraciliature. Journal of Eukaryotic Microbiology, 50(6): 449–462. von Hebing I H, Gallager S M. 2000. Foraging behavior in early Atlantic cod larvae (Gadus morhua) feeding on a protozoan (Balanion sp.) and a copepod nauplius (Pseudodiaptomus sp.). Marine Biology, 136(3): 591–602. 卞伯仲, 李明仁, 刘力. 1987. 环境因子对盐田蚕豆虫(Fabrea salina Henneguy)生长的影响. 动物学报, 33(3): 248–254. 类彦立, 徐奎栋. 2007. 海洋底栖原生动物生态学研究方法学综述. 海洋科学, 31(5): 49–57. 类彦立, 徐奎栋. 2011. 海洋微型底栖生物调查方法与操作规程. 海洋与湖沼, 42(1): 157–164. 李承春. 2012. 海洋大型底栖纤毛虫的种群增长和摄食效应. 青岛: 中国科学院海洋研究所博士学位论文, 41–58. 刘亚军, 赵文. 2004. 杜氏藻的生物学和生态学研究进展. 大连海洋大学学报, 19(2): 126–131. 潘莹, 姜勇, 张伟, 等. 2010. 不同温度对3种海洋纤毛虫种群增长的影响. 应用与环境生物学报,16(6): 807–811. 齐红莉, 汤荣成, 徐海龙, 等. 2018. 三氯异氰尿酸对海洋拟阿脑虫种群生长的影响. 水生态学杂志, 39(3): 94–98. 沈琳琳, 林能峰, 詹子峰, 等. 2014. 不同培养条件水滴伪康纤虫种群生长研究. 福建农业学报, 29(2): 107–112. 宋微波, 沃伦, 胡晓钟. 2009. 中国黄渤海的自由生纤毛虫. 北京: 科学出版社, 300–310. 王梅, 许恒龙, 陶振铖. 2003. 海洋纤毛虫试验生态学研究I: 不同浓度葡萄糖对种群增长的影响. 应用与环境生物学报, 9(6): 627–630. 徐金传, 易翀, 郭刚. 2012. 活饵料在渔业中的应用. 渔业致富指南, (3): 23–24. 叶锦春, 张洁明, 陈松林. 1984. 纤毛虫的培养和利用. 淡水渔业, (3): 9–12, 3. 曾红, 沈琳琳, 林能峰, 等. 2015. 不同培养条件对海洋尾丝虫种群增长的影响. 福建师范大学报, 31(1): 88–92. 张绍丽, 马洪刚, 宋微波. 2001. 海洋纤毛虫巨大拟阿脑虫的实验生态学研究: 初始密度及食物对其种群生长的影响. 海洋与湖沼, 32(6): 641–646. 张武昌, 李海波, 丰美萍. 2014. 海洋浮游纤毛虫生长率研究进展. 生态学报, 34(8): 1897–1909.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汤荣成,齐红莉,王红宇,李雪菡,王茜,戴伟,张树林.2019.不同食物及食物密度对盐蚕豆虫 种群动力学特征的影响.动物学杂志,54(4):529-537.

复制
文章指标
  • 点击次数:1235
  • 下载次数: 1488
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2018-12-07
  • 最后修改日期:2019-06-11
  • 录用日期:2019-05-31
  • 在线发布日期: 2019-08-07