亚磁场对雄性小鼠神经递质、 激素和血常规的影响
作者:
作者单位:

中国科学院地质与地球物理研究所

基金项目:

中国科学院重点资助项目,国家自然科学基金项目(面上项目,重点项目,重大项目)


Effects of Hypomagnetic Field on Neurotransmitter, Hormone and Blood Parameters in Male Mice
Author:
Affiliation:

Institute of Geology and Geophysics, Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究主要是探讨连续亚磁场环境暴露对C57BL/6雄性小鼠(Mus musculus domesticus)神经递质、激素含量和血常规参数的影响。实验组为亚磁场暴露组(1.1 ± 0.5)μT,对照组为地磁场组(53.3 ± 0.2)μT。实验对象分别为3周龄幼年小鼠和8周龄成年小鼠。幼年小鼠随机分为实验组与对照组,每组42 只;成年小鼠也随机分为实验组与对照组,每组36只。幼年小鼠在两种磁场环境中的暴露时间为1 ~ 5周,成年小鼠的暴露时间为1、3、6、9、12周。采用液相色谱-质谱联用法(LC-MS)检测小鼠脑组织及血清中的神经递质含量,包括5-羟色胺(5-HT)、多巴胺(DA)、乙酰胆碱(Ach)、去甲肾上腺素(NA)、γ-氨基丁酸(GABA);用 ELISA 方法检测小鼠血清中的激素含量,包括甲状腺素(T4)、生长激素(GH)、去甲肾上腺素(NA);血常规在北京大学医学部检测。采用独立样本 t 检验对实验组与对照组的检测结果进行差异分析。与地磁场组相比,亚磁场组幼年小鼠脑组织多巴胺(DA)含量在第5周有显著降低(P < 0.05),血清中的甲状腺素(T4)含量在第 2和5 周有显著降低(P < 0.05),去甲肾上腺素(NA)含量在第4周出现显著性降低(P < 0.01);与地磁场组相比,成年小鼠脑组织5-羟色胺(5-HT)、去甲肾上腺素(NA)含量在处理1周时均出现显著性降低(P < 0.05),血清中5-羟色胺(5-HT)含量在第3周也出现显著性降低(P < 0.01),甲状腺素(T4)含量在第 3、6、12 周出现显著性降低(P < 0.05)。血常规结果显示,成年和幼年小鼠的白细胞(WBC)在暴露早期第1周和第2周分别出现显著性增多(P < 0.01),其他参数基本无变化。本研究发现,两个年龄段的小鼠对亚磁场响应的指标不完全一致,仅甲状腺素(T4)在两个年龄段小鼠的体内都出现显著性降低。通过本研究说明,甲状腺素(T4)、5-羟色胺(5-HT)、去甲肾上腺素(NA)、多巴胺(DA)和白细胞(WBC)可能是不同年龄段小鼠对亚磁场环境暴露较为敏感的生理指标,可在今后的亚磁场生物效应研究中重点关注。

    Abstract:

    We aimed to investigate the effects of continuous exposure to hypomagnetic field on neurotransmitter, hormone content and blood routine parameters in juvenile (three weeks old) and adult (eight weeks old) male C57BL/6 mice (Mus musculus domesticus). The experimental group was exposed to the hypomagnetic field at density of 1.1 ± 0.5 μT, while the control group was exposed to the geomagnetic field at density of 53.3 ± 0.2 μT. A total of 84 and 72 male juvenile and adult mice were randomly divided into the experimental group and the control group, 42 and 36 in each group, respectively. Juvenile mice were exposed to the two kinds of magnetic field for 1 to 5 weeks while adult mice for 1, 3, 6, 9, and 12 weeks. The contents of neurotransmitters and hormones including gamma-aminobutyric acid (GABA), serotonin (5-HT), dopamine (DA), acetylcholine (Ach), noradrenaline (NA), thyroxine (T4) and growth hormone (GH) in the brain tissue or serum samples were measured using LC-MS and ELISA. Blood routine parameters were also measured in Peking University Health Science Center. We compared the results of the experimental and control groups with independent sample t-test. The results showed that the contents of 5-HT and NA in the brain tissues of adult mice exposed to hypomagnetic field decreased significantly after 1-week exposure (P < 0.05) (Fig. 1), and the contents of 5-HT in serum decreased significantly after 3-week exposure (P < 0.01). The contents of T4 decreased significantly at the 3rd, 6th, 12th week (P < 0.05) (Fig. 2). The content of DA in brain tissues of juvenile mice decreased at the 5th week (P < 0.05) (Fig. 1). The content of T4 in serum decreased significantly at the 2nd and 5th week (P < 0.05) while NA decreased significantly at the 4th week (P < 0.01) (Fig. 2). Blood routine examination showed that white blood cells (WBC) increased significantly at the 1st week for adult and 2nd week for juvenile mice, respectively (P < 0.01). Other parameters had no significant differences (Fig. 3 and appendix 1). This study shows that the parameters responding to the exposure to hypomagnetic field for juvenile and adult mice are not completely consistent, excepting that T4 reduces significantly in both groups. The results indicate that T4, 5-HT, NA, DA and WBC may be physiological parameters sensitive to the hypomagnetic-field exposure, which should be paid special attention to in future studies.

    参考文献
    Asashima, M, Shimada K, Pfeiffer C J. 1991. Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster. Bioelectromagnetics, 12(4): 215–224. Backman L, Lindenberger U, Li S C, et al. 2010. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neuroscience and Biobehavioral Reviews, 34(5): 670–677. Bellintani-Guardia B, Schweizer M, Herbert H. 1996. Analysis of projections from the cochlear nucleus to the lateral paragigantocellular reticular nucleus in the rat. Cell and Tissue Research, 283(3): 493–505. Binhi V N, Prato F S. 2017. Biological effects of the hypomagnetic field: an analytical review of experiments and theories. PLoS One, 12(6): e0179340. Clement Y, Chapouthier G. 1998. Biological bases of anxiety. Neuroscience and Biobehavioral Reviews, 22(5): 623–633. Ding H M, Wang X, Mo W C, et al. 2019. Hypomagnetic fields cause anxiety in adult male mice. Bioelectromagnetics, 40(1): 27–32. Fesenko E E, Mezhevikina L M, Osipenko M A, et al. 2010. Effect of the “zero” magnetic field on early embryogenesis in mice. Electromagnetic Biology and Medicine, 29(1-12): 1–8. Kopanev V I, Efimenko G D, Shakula A V. 1979. Biological effect of a hypogeomagnetic environment on an organism. Biology Bulletin of the Academy of Sciences of the Union of Soviet Socialist Republics, 6(3): 289. Mo W C, Fu J P, Ding H M, et al. 2015. Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice. Progress in Biochemistry and Biophysics, 42(7): 639–646. Mo W C, Liu Y, Bartlett P F, et al. 2014. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field. Science China Life Sciences, 57(4): 448–461. Nutt D J. 2008. Relationship of neurotransmitters to the symptoms of major depressive disorder. The Journal of Clinical Psychiatry, 69: 4–7. Perry E, Walker M, Grace J, et al. 1999. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci, 22(6): 273–280. Petty F. 1995. GABA and mood disorders: a brief review and hypothesis. Journal of Affective Disorders, 34(4): 275–281. Schildkraut J J. 1965. The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry, 122(5): 509–522. Shiah I, Yatham L N. 1998. GABA function in mood disorders: an update and critical review. Life Sciences, 63(15): 1289–1303. Smith J W, Tudor E A, Costall B, et al. 2002. Thyroid hormones, brain function and cognition: a brief review. Neuroscience and Biobehavioral Reviews, 26(1): 45–60. Zaporozhan V, Nasibullin B, Hozhenko A, et al. 2002. Effects of hypogeomagnetic fields on the structural-functional activity of rat cerebral cortex. Fiziolohichnyi Zhurnal, 48(3): 16–21. 蔡文琴. 2007. 发育神经生物学. 北京: 科学出版社, 541–568. 陈乃宏. 2012. 神经递质与神经疾患. 北京: 中国协和医科大学出版社, 326–337. 丁海敏, 莫炜川, 付晶鹏, 等. 2014. 成年小鼠血液系统对亚磁场的响应. 现代生物医学进展, 14(26): 5001–5004. 贾斌, 张卫菊, 谢丽, 等. 2011. 亚磁场环境对小鼠血液系统的影响. 航天医学与医学工程, 24(5): 318–322. 李俊凤, 吴奇久, 王倩, 等. 2001. 零磁空间对金黄仓鼠脑中几种神经递质的影响. 生物化学与生物物理进展, 28(3): 358–361. 莫炜川, 刘缨, 赫荣乔. 2012. 亚磁场及其生物响应机制. 生物化学与生物物理进展, 39(9): 7–14. 秦川, 魏泓. 2015. 实验动物学. 北京: 人民卫生出版社, 32–33. 田兰香, 潘永信. 2018. 地磁场与动物感磁. 科学通报, 64(8): 761–772. 杨林, 朱叶萌, 刘科, 等. 2015. MRL/lpr 狼疮小鼠和 C57小鼠血常规、主要脏器系数的测定与比较. 实验动物科学, 32(3): 44–47. 张蕾, 孔令提, 孙兰, 等. 2013. LC-MS /MS 同时测定小鼠脑组织中7种神经递质含量. 中国实验方剂学杂志, 19(20): 132–136. 血液系统的影响. 航天医学与医学工程, 24(5): 318-322.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张盈盈,田兰香.2019.亚磁场对雄性小鼠神经递质、 激素和血常规的影响.动物学杂志,54(4):538-548.

复制
文章指标
  • 点击次数:1207
  • 下载次数: 1491
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-04-08
  • 最后修改日期:2019-06-04
  • 录用日期:2019-05-31
  • 在线发布日期: 2019-08-07