有鳞目动物鳞片表面超微结构的适应性进化
作者:
作者单位:

1.南京师范大学生命科学学院 南京 210023;2.南京师范大学分析测试中心 南京 210023

基金项目:

国家自然科学基金项目(No. 31770443,31200283)和江苏省自然科学基金项目(No. BK20161556)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    爬行动物鳞片的微结构是对环境的一种适应。本研究运用扫描电子显微镜观察了北草蜥(Takydromus septentrionalis)、脆蛇蜥(Dopasia harti)和王锦蛇(Elaphe carinata)头部、背部和腹部鳞片的微皮纹结构及感受器特征。结果表明,3个物种的微皮纹和感受器存在种间差异。北草蜥和王锦蛇背部及腹部微皮纹均为狭长带状,脆蛇蜥为不规则多边形。北草蜥和王锦蛇颔片上有感受器,北草蜥无。脆蛇蜥腹部微皮纹上无小齿状凸起,北草蜥和王锦蛇有,与北草蜥相比王锦蛇的小齿状凸起更宽更长。王锦蛇的眼部微皮纹为向上竖起的脊,而其他部位的鳞片为具有小齿状凸起的狭长带状结构。本研究共收集整理17科99种的背鳞微皮纹数据和8科25种的感受器数据,对微皮纹特征和感受器形态进行祖先重建发现,狭长带状背鳞微皮纹主要存在于蜥蜴科(Lacertidae)、游蛇科(Colubridae)和石龙子科(Scincidae)中,而鬛蜥科(Agamidae)、蛇蜥科(Anguidae)、蟒蛇科(Boidae)以及蝰蛇科(Viperidae)的大多为多边形;较原始的感受器形态为无感觉毛的透镜状,这一结构在有鳞目动物进化中发生多次演化。本研究发现蛇蜥的鳞片表面微结构更接近于蛇类动物。因此,有鳞类动物鳞片微皮纹特征和皮肤感受器的形态是对其所处环境多重压力的优化选择。

    Abstract:

    Scales in squamate reptiles are the main features that distinguish them from the other amniotes. The ultrastructure of scales in squamate reptiles was an adaptation to the local environment. We used scanning electron microscope to observe the microornamentation and scale sensilla on heads, middle dorsal and middle ventral parts of Takydromus septentrionalis, Dopasia harti and Elaphe carinata. Our results showed that there were interspecies and intraspecific differences in the microornamentation and scale sensilla of the examined species: 1) oberhautchen of T. septentrionalis and E. carinata was consisted of ?at and strap-shaped cells, but oberhautchen of O. harti was formed by polygonal cells; 2) the lenticular scale sensilla existed on the chin-shields of O. harti and E. carinata, while there was no lenticular scale sensilla on the chin-shields of T. septentrionalis; 3) the posterior margin denticulations were present on the oberhautchen of T. septentrionalis and E. carinata, however, the denticulations of E. carinata were wider and longer than in T. septentrionalis; 4) the oberhautchen cells appeared erect ridge on circumocular scales, while flat and strap-shaped cells were found on the scales of other parts in E. carinata. Simultaneously, a total of 17 families and 99 species of dorsal scale microornamentation data and 8 families and 25 species of receptor data were collected and ancestral reconstructions were performed on terrestrial squamate microornamentation and scale sensilla. The results showed that the narrow strap-shaped cells mainly existed in the Lacertide, Colubridae and Scincidae, while the polygonal cells existed in the Agamidae, Anguidae, Boidae and Viperidae. The ancestral morphology of scale sensilla was lenticular-like and lenticular, furthermore, the lenticular structure has evolved repeatedly. In addition, we speculated that the microornamentations and scale sensilla of the O. harti were closer to those snakes. Therefore, it was deduced that the morphological features of the microornamentations and scale sensillum of squamates contributed to their ecological adaptation to preferential microhabitats.

    参考文献
    Abdel-Aal H A. 2018. Surface structure and tribology of legless squamate reptiles. Journal of the Mechanical Behavior of Biomedical Materials, 79: 354–398. Abdel-Aal H A, Mansori M E. 2014. Characterization of load bearing metrological parameters in reptilian exuviae in comparison to precision finished cylinder liner surfaces. Surface Topography: Metrology and Properties, 2(4): 045002. Abo-Eleneen R E, Allam A A. 2011. Comparative morphology of the skin of Natrix tessellata (family: Colubridae) and Cerastes vipera (family: Viperidae). Zoological Science, 28(10): 743–748. Alibardi L, Toni M. 2006. Immunolocalization and characterization of beta-keratins in growing epidermis of chelonians. Tissue & Cell, 38(1): 53–63. Allam A A, Abo-Eleneen R E. 2012. Scales microstructure of snakes from the Egyptian area. Zoological Science, 29(11): 770–775. Allam A A, Abo-Eleneen R E, Othman S I. 2017. Microstructure of scales in selected lizard species. Saudi Journal of Biological Sciences, 26(1): 129–136. Ananjeva N B. 1991. The skin sense organs of some Iguanian Lizards. Journal of Herpetology, 25(2): 186–199. Ananjeva N B, Dujsebayeva T N, Joger U. 2001. Morphological study of the squamate integument: More evidence for the metataxon status of Leiolepidinae. Journal of Herpetology, 35(3): 507–510. Arnold E N. 2002. History and function of scale microornamentation in lacertid lizards. Journal of Morphology, 252(2): 145–169. Bauer A M, Russell A P. 1988. Morphology of gekkonid cutaneous sensilla, with comments on function and phylogeny in the Carpodactylini (Reptilia: Gekkonidae). Canadian Journal of Zoology, 66(7): 1583–1588. Berthe R A, Westhoff G, Bleckmann H, et al. 2009. Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). Journal of Comparative Physiology A, 195(3): 311–318. Brandley M C, Huelsenbeck J P, Wiens J J. 2008. Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution, 62(8): 2042–2064. Bucklitsch Y, Bohme W, Koch A. 2016. Scale morphology and micro-structure of monitor lizards (Squamata: Varanidae: Varanus spp.) and their allies: implications for systematics, ecology, and conservation. Zootaxa, 4153(1): 1–192. Burstein N. 1974. A preliminary survey of dermatoglyphic variation in the lizard genus Sceloporus. Journal of Herpetology, 8(4): 359–369. Cernansky A. 2016. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives. Journal of morphology, 277(4): 512–536. Crowe-Riddell J M, Snelling E P, Watson A P, et al. 2016. The evolution of scale sensilla in the transition from land to sea in elapid snakes. Open Biology, 6(6): 160054. Dujsebayeva T N. 2004. Reduced state of skin sense organs in Sphenodon punctatus (Rhynchocephalia: Sphenodontidae) and its phylogenetical value. Russian Journal of Herpetology, 11(2): 106–110. El-Sayyad A, Yonis W F M, Bayomy F F M, et al. 2009. Epidermal sense organs of the Gekkonid Tropicolotes tripolitanus Peters 1880. Journal of Cell and Animal Biology, 3(6): 88–92. Fox S F. 2004. Lizards: windows to the evolution of diversity. Copeia, 2004(4): 955–957. Gans C. 1975. Tetrapod limblessness: Evolution and functional corollaries. Integrative and Comparative Biology, 15(2): 455–467. Gower D J. 2003. Scale microornamentation of uropeltid snakes. Journal of Morphology, 258(2): 249–268. Hart N S, Coimbra J P, Collin S P, et al. 2012. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. Journal of Comparative Neurology, 520(6): 1246–1261. Harvey M B. 1993. Microstructure, ontogeny, and evolution of scale surfaces in xenosaurid lizards. Journal of Morphology, 216(2): 161–177. Harvey M B, Gutberlet R L. 1995. Microstructure, evolution, and ontogeny of scale surfaces in cordylid and gerrhosaurid lizards. Journal of Morphology, 226(2): 121–139. Hiller U. 1978. Morphology and electrophysiological properties of cutaneous sensilla in agamid lizards. Pflügers Archiv European Journal of Physiology, 377(2): 189–191. Jackson M K. 1977. Histology and distribution of cutaneous touch corpuscles in some leptotyphlopid and colubrid snakes (Reptilia, Serpentes). Journal of Herpetology, 11(1): 7–15. Joost M W. 2012. From lizard to snake; behind the evolution of an extreme body plan. Current Genomics, 13(4): 289–299. Kardong K V, Kiene T L, Bels V. 1996. Evolution of trophic systems in squamates. Netherlands Journal of Zoology, 47(4): 411–427. Kerfoot W C. 1970. The effect of functional changes upon the variability of lizard and snake body scale numbers. Copeia, 1970(2): 252–260. Klein M C, Gorb S N. 2012. Epidermis architecture and material properties of the skin of four snake species. Journal of the Royal Society Interface, 9(76): 3140–3155. Lee M S Y, Gorden L. Bell J, et al. 1999. The origin of snake feeding. Nature, 400(6745): 655–659. Leydig F. 1872. über die ?usseren Bedeckungen der Reptilien und Amphibien. 1: Die Haut einheimischer Ophidier. Archiv Für Mikroskopische Anatomie, 9: 753–794. Lorenzo A. 2003. Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. Journal of Experimental Zoology, 298(1): 12–41. Maclean S. 1980. Ultrastructure of epidermal sensory receptors in Amphibolurus barbatus (Lacertilis: Agamidae). Cell and Tissue Research, 210(3): 435–445. Maddison W P, Maddison D R V. 2009. MESQUITE: a modular system for evolutionary analysis. Matveyeva T N, Ananjeva N B. 1995. The distribution and number of the skin sense organs of agamid, iguanid and gekkonid lizards. Journal of Zoology, 235(2): 253–268. Nikitina N G, Ananjeva N B. 2005. The skin sense organs of lizards of Teratoscincus genus (Squamata: Sauria: Gekkonidae). Russian Journal of Herpetology. 12: 291–295 Peterson J A. 1984a. The microstructure of the scale surface in iguanid lizards. Journal of Herpetology, 18(4): 437–467. Peterson J A. 1984b. The scale microarchitecture of Sphenodon punctatus. Journal of Herpetology, 18: 40–47. Peterson J A, Bezy R L. 1985. The microstructure and evolution of scale surfaces in Xantusiid lizards. Herpetologica, 41(3): 298–324. Pradap J P, Kalayarasan M, Shanth M D, et al. 2018. Investigations on anisotropic frictional response on different types of shed snake's skin. Jurnal Tribologi, 18: 97–107. Price R M. 1982. Dorsal snake scale microdermatoglyphics: ecological indicator or taxonomic tool? Journal of Herpetology, 16(3): 294–306. Price R, Kelly P. 1989. Microdermatoglyphics: basal patterns and transition zones. Journal of Herpetology, 23(3): 244–261. Pyron R A, Burbrink F T, Wiens J J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13(1): 93–93. Riedel J, B?hme W, Bleckmann H, et al. 2015. Microornamentation of leaf chameleons (Chamaeleonidae: Brookesia, Rhampholeon, and Rieppeleon)—with comments on the evolution of microstructures in the chamaeleonidae. Journal of Morphology, 276(2): 167–184. Rocha-Barbosa. 2009. Analysis of the microstructure of Xenodontinae snake scales associated with different habitat occupation strategies. Brazilian Journal of Medical & BiologicalI Resarch, 69(3): 919–923. Ruibal R. 1968. The Ultrastructure of the Surface of Lizard Scales. Copeia, 1968(30): 698–703. Russell A P, Lai E K, Lawrence P G, et al. 2014. Density and distribution of cutaneous sensilla on tails of leopard geckos (Eublepharis macularius) in relation to caudal autotomy. Journal of Morphology, 275(9): 961–979. Schmidt C V, Gorb S. 2012. Snake scale microstructure phylogenetic significance and functional adaptations. Vertebrate Zoology, 157: 1–106. Sherbrooke W, Nagle R. 1996. Phrynosoma intraepidermal receptor: A dorsal intraepidermal mechanoreceptor in horned lizards (Phrynosoma; Phrynosomatidae; Reptilia). Journal of Morphology, 228(2): 145–154. Shine R. 1986. Evolutionary advantages of limblessness: evidence from the Pygopodid lizards. Copeia, 1986(2): 525–529. Shine R. 2008. Homalopsid snakes: evolution in the Mud. The Quarterly Review of Biology, 83(1): 123. Spinner M, Gorb S N, Westhoff G. 2013. Diversity of functional microornamentation in slithering geckos Lialis (Pygopodidae). Proceedings Biological Sciences, 280(1772): 20132160. Stewart G R, Daniel R S. 1973. Scanning electron microscopy of scales from different body regions of three lizard species. Journal of Morphology, 139(4): 377–388. Stewart G R, Daniel R S. 1975. Microornamentation of lizard scales: some variations and taxonomic correlations. Herpetologica, 31(1): 117–130. Stewart W J, Cardenas G S, Mchenry M J. 2013. Zebrafish larvae evade predators by sensing water flow. Journal of Experimental Biology, 216(3): 388–398. Uetz P, Freed P, Ho?ek J. 2019. The reptile database.[DB/OL]. [2019-06-15]. http://www.reptile-database.org/. Westhoff G, Fry B G, Bleckmann H. 2005. Sea snakes (Lapemis curtus) are sensitive to low-amplitude water motions. Zoology, 108(3): 195–200. Wiens J J, Brandley M C. 2006. Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution, 60(1): 123–141. Wiens J J, Slingluff J L. 2001. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution, 55(11): 2303–2318. 常城, 王子仁. 1996. 荒漠沙蜥皮肤感受器的形态学研究. 兰州大学学报: 自然科学版, 32(1): 92–97. 王博. 2007. 蜂窝结构多功能优化设计. 大连: 大连理工大学博士学位论文. 王晓彤, 罗旭, 李奇生. 2016. 游蛇科8种蛇的鳞片显微皮纹结构观察. 动物学杂志, 51(4): 606–613. 王玉瑛, 吴荣煌. 2000. 蜂窝材料及孔格结构技术的发展. 航空材料学报, 20(3): 172–177.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王可心,赵雨恬,蒋怡锦,戴颖玉,胡超超,屈彦福.2020.有鳞目动物鳞片表面超微结构的适应性进化.动物学杂志,55(2):113-133.

复制
文章指标
  • 点击次数:2073
  • 下载次数: 1733
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-10-23
  • 最后修改日期:2020-03-20
  • 录用日期:2020-03-18
  • 在线发布日期: 2020-04-21