东北梅花鹿野生种群分布与 遗传变异的分子鉴定
作者:
作者单位:

1.东北林业大学野生动物与自然保护地学院 哈尔滨 150040;2.牡丹江师范学院生命科学与技术学院 牡丹江 157011;3.黑龙江省野生动物研究所 哈尔滨 150081

基金项目:

黑龙江省基本科研业务费项目(No. 1353ZD006),国家自然科学基金项目(No. 30870309),牡丹江师范学院校级项目(No. GP2019005,MQP201405,QN2019009)


Molecular Identification of the Population Distribution and Genetic Variation of Cervus nippon hortulorum
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    梅花鹿东北亚种(Cervus nippon hortulorum)曾被认为已野外灭绝,近年来在黑龙江东南部和吉林东部临近边境地区发现少量分布,其生境隔离、面积狭小,破碎化严重。亟需对其种群的遗传变化,特别是遗传多样性和近交衰退等种群遗传信息开展进一步评价,增强保护与管理的针对性。本研究在大、小兴安岭和长白山设计9个重点研究区域,共收集673份疑似梅花鹿粪样样本。首先基于线粒体DNA Cyt b基因测序技术开展物种鉴定,并对鉴定为梅花鹿的阳性样本利用微卫星技术进行个体识别。结果证实,东北梅花鹿仅在老爷岭东部山脉有分布,106份梅花鹿粪便DNA中识别出33只个体(穆棱保护区20只,老爷岭保护区13只)。33个Cyt b基因序列共检测出6个变异位点和5个单倍型,单倍型多样性指数(Hd)为0.621,核苷酸多样性指数(Pi)为0.006 7;微卫星检出种群平均等位基因数(Na)7.1个,观测杂合度(Ho)0.604,期望杂合度(He)0.712,固定系数(Fis)0.152。结果表明,东北梅花鹿种群遗传多样性丰富,但也存在一定程度的杂合度不足和近亲繁殖;种群近期经历了瓶颈效应,未发生种群扩张;群体间无遗传分化,可作为一个管理单元加以保护。建议,对东北梅花鹿稀有单倍型个体重点监测和保护,恰当时期考虑圈养种群野外放归,以提高野外个体间基因交流和快速种群恢复。

    Abstract:

    Cervus nippon hortulorum was once considered to be extinct in the wild. In recent years, some small size populations were found in the southeastern part of Heilongjiang province and the eastern part of Jilin province, nearing the border. Since the habitats of C. n. hortulorum are narrow, isolated and fragmented, it is an urgent need to further evaluate the genetic changes of the population, especially the genetic diversity and inbreeding decline, so as to enhance the pertinence of conservation and management. In this study, 673 suspected fecal samples of sika deer were collected from 9 key research areas in Daxing'an, Xiaoxing'an and Changbai Mountains (Fig. 1). Firstly, species identification was carried out based on DNA Cyt b gene sequencing technology, and the positive samples were supplied for further individual identification by microsatellite technology. At last, Microchecker 2.2.3 software was used to detect the invalid allele or allele deletion of each locus; and Genalex 6.0 software was used to calculate the population average allele number (Na), observed heterozygosity (Ho), expected heterozygosity (He) and fixed coefficient (Fis). A total of 33 individuals (20 in Muling nature reserve and 13 in Laoyeling nature reserve) were identified from 106 fecal DNA samples of sika deer (Fig. 2 and Table 1). Six variation sites and five haplotypes were detected in the Cyt b sequence of these 33 individuals. The values of Hd, Pi, Na, Ho, He and Fis were 0.621, 0.006 7, 7.1, 0.604, 0.712, and 0.152, respectively (Table 1). The results showed that the population genetic diversity of Northeastern sika deer was rich, but there was also a certain degree of heterozygosity deficiency and inbreeding (Table 1); the population experienced bottleneck effect in recent years, without population expansion (Table 1 and Fig. 5); there was no genetic differentiation between populations, which could be protected as a management unit (Table 2 and Fig. 3, 4). It is suggested that the individuals with rare haplotypes should be taken as the key point in monitoring and protection, and the artificial bred populations should be released in the field at the right time, so as to improve the gene exchange between individuals in the field and accelerate the population restoration.

    参考文献
    Bellemain E, Swenson J E, Tallmon D, et al. 2005. Estimating population size of elusive animals with DNA from hunter- collected feces: Four methods for brown bears. Conservation Biology, 19(1): 150–161. Excoffier L, Laval G, Schneider S. 2005. Arlequin version 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1(4A): 47–50. Frankham R, Ballou J D, Briscoe D A. 2010. Introduction to Conservation Genetics. 2nd ed. New York: Cambridge University Press, 235–237. Goodman S J, Tamate H B, Wilson R, et al. 2001. Bottlenecks, drift and differentiation: The population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Molecular Ecology, 10(6): 1357–1370. Grant W S, Bowen B W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5): 415–426. Hung C M, Li S H, Lee L L. 2004. Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Animal Conservation, 7(3): 301–311. Igota H, Sakuragi M, Uno H, et al. 2004. Seasonal migration patterns of female sika deer in eastern Hokkaido, Japan. Ecological Research, 19(2): 169–178. Irwin D M, Kocher T D, Wilson A C. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution, 32(2): 128–144. Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106. Kocher T D, Thomas W K, Meyer A, et al. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86(16): 6196–6200. Krojerová-Proke?ová J, Baran?eková M, Voloshina I, et al. 2013. Dybowski’s sika deer (Cervus nippon hortulorum): Genetic divergence between natural Primorian and introduced Czech populations. Journal of Heredity, 104(3): 312–326. Kumar S, Stecher G, Li M, et al. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547–1549. Larkin M A, Blackshields G, Brown N P, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(11): 2947–2948. Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451–1452. Liu G, Xu C Q, Cao Q, et al. 2014. Mitochondrial and pedigree analysis in Przewalski’s horse populations: Implications for genetic management and reintroductions. Mitochondrial DNA, 25(4): 313–318. Lü X P, Wei F W, Li M, et al. 2006. Genetic diversity among Chinese sika deer (Cervus nippon) populations and relationships between Chinese and Japanese sika deer. Chinese Science Bulletin, 51(4): 433–440. Makovkin L I. 1999. The Sika Deer of Lazovsky Reserve and Surrounding Areas of the Russian Far East. Vladivostok: Almanac Russki Ostrov Dal Press, 180–186. Moritz C. 1994. Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology & Evolution, 9(10): 373–375. Nabata D, Masuda R, Takahashi O. 2004. Bottleneck effects on the sika deer Cervus nippon population in Hokkaido, revealed by ancient DNA analysis. Zoological Science, 21(4): 473–481. Nagata J, Masuda R, Kaji K, et al. 1998a. Genetic variation and population structure of the Japanese sika deer (Cervus nippon) in Hokkaido Island, based on mitochondrial D-loop sequences. Molecular Ecology, 7(7): 871–877. Nagata J, Masuda R, Kaji K, et al. 1998b. Microsatellite DNA variations of sika deer, Cervus nippon, in Hokkaido and Chiba. Mammal Study, 23(2): 95–101. Peakall R, Smouse P E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1): 288–295. Pérez-Espona S, Pérez-Barbería F J, Mcleod J E, et al. 2008. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Molecular Ecology, 17(4): 981–996. Qi J Z, Shi Q H, Wang G M, et al. 2015. Spatial distribution drivers of Amur leopard density in northeast China. Biological Conservation, 191(11): 258–265. Rozas J, Sánchez-DelBarrio J C, Messeguer X, et al. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19(18): 2496–2497. Taberlet P, Griffin S, Goossens B, et al. 1996. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research, 24(16): 3189–3194. Takii A, Izumiyama S, Taguchi M. 2012. Partial migration and effects of climate on migratory movements of sika deer in Kirigamine Highland, central Japan. Mammal Study, 37(4): 331–340. van Oosterhout C, Hutchinson W F, Wills D P M, et al. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3): 535–538. Whitehead G K. 1993. Encyclopedia of Deer. Shrewsbury: Swan Hill Press, 232–236. Wu H, Wan Q H, Fang S G. 2004. Two genetically distinct units of the Chinese sika deer (Cervus nippon): Analyses of mitochondrial DNA variation. Biological Conservation, 119(2): 183–190. Yuasa T, Nagata J, Hamasaki S, et al. 2007. The impact of habitat fragmentation on genetic structure of Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. Ecological Research, 22(1): 97–106. 黄沛琳, 肖文宏, 杨海涛, 等. 2015. 东北梅花鹿种群活动节律和集群行为研究. 北京师范大学学报: 自然科学版, 51(5): 498–503. 蒋志刚, 江建平, 王跃招, 等. 2016. 中国脊椎动物红色名录. 生物多样性, 24(5): 500–551. 蒋志刚, 马勇, 吴毅, 等. 2015. 中国哺乳动物多样性及地理分布. 北京: 科学出版社, 201. 刘海, 杨光, 魏辅文, 等. 2003. 中国大陆梅花鹿mtDNA控制区序列变异及种群遗传结构分析. 动物学报, 49(1): 53–60. 刘鑫鑫. 2017. 基于分子粪便学的穆棱地区同域分布梅花鹿(Cervus nippon)和马鹿(Cervus elaphus)遗传多样性比较研究. 哈尔滨: 东北林业大学硕士学位论文, 15–18. 刘艳华, 张明海. 2011. 基于线粒体Cyt b基因的西藏马鹿种群遗传多样性研究. 生态学报, 31(7): 1976–1981. 吕晓平, 魏辅文, 李明, 等. 2006. 中国梅花鹿(Cervus nippon)遗传多样性及与日本梅花鹿间的系统关系. 科学通报, 51(3): 292–298. 盛和林. 1992. 中国鹿类动物. 上海: 华东师范大学出版社, 202–212. 石全华. 2016. 长白山地东北虎猎物恢复—梅花鹿重引入适应性研究. 哈尔滨: 东北林业大学博士学位论文, 18–20. 孙海涛, 李馨, 耿忠诚, 等. 2009. 梅花鹿3个种群遗传多样性的微卫星标记分析. 动物学杂志, 44(3): 30–35. 汪松. 1998. 中国濒危动物红皮书. 北京: 科学出版社, 266–269. 吴华, 胡杰, 方盛国, 等. 2006. 中国圈养梅花鹿的遗传多样性和遗传结构. 动物学杂志, 41(4): 41–47. 吴华, 胡杰, 万秋红, 等. 2008. 梅花鹿的微卫星多态性及种群的遗传结构. 兽类学报, 28(2): 109–116. 杨海涛, 谢冰, 韩思雨, 等. 2018. 吉林珲春自然保护区梅花鹿种群多度的季节分布及其影响因素. 北京师范大学学报: 自然科学版, 54(4): 498–505. 张鹏. 2015. 基于自动相机技术的兽类监测及狍栖息地选择研究. 哈尔滨: 东北林业大学硕士学位论文, 15–16. 张于光, Hacker C, 张宇, 等. 2019. 三江源和祁连山国家公园雪豹种群的遗传结构分析. 兽类学报, 39(4): 442–449. 周绍春, 梁卓, 金光耀, 等. 2018. 黑龙江老爷岭东北虎国家级自然保护区梅花鹿种群数量及分布研究. 林业科技, 43(4): 1–3.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田新民,刘鑫鑫,周绍春,张明海,王晓龙.2020.东北梅花鹿野生种群分布与 遗传变异的分子鉴定.动物学杂志,55(3):329-338.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-21
  • 最后修改日期:2020-04-27
  • 录用日期:2020-04-26
  • 在线发布日期: 2020-06-12