两栖动物性染色体的多样性及其 进化机制的研究进展
作者:
基金项目:

四川省教育厅科研重点项目(No. 18ZA0443),西昌学院博士启动项目(No. 2017BS009)


Advances in the Diversity and Evolution Mechanism of Sex Chromosomes in Amphibians
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    两栖动物性别决定类型和性染色体具有多样性的特点。在已发现异形性染色体两栖动物中,大部分物种Y或W染色体大于其对应的X或Z染色体,少数物种具有高度分化的Y或W染色体。同时两栖动物类群内基因组大小差异大,性染色体间分子水平上也存在差异。高频转换、偶然重组和染色体重排可能是两栖动物性染色体进化过程中的关键机制。本综述通过对两栖动物性染色体进化的深入探讨,揭示其遗传性别决定的机理,有助于对两栖动物性别人工调控的进一步探索。

    Abstract:

    The sex determination types and sex chromosomes of amphibians are characterized by diversity. Among the amphibians in which heteromorphic chromosomes have been found, most species have Y or W chromosomes larger than their corresponding X or Z chromosomes, and a few species have highly differentiated Y or W chromosomes. At the same time, the genome size of amphibians varies greatly, and there are also molecular differences between sex chromosomes. High-frequency turnover, accidental recombination, and chromosomal rearrangement may be key mechanisms in the evolution of sexual chromosomes in amphibians. The review reveals the mechanism of genetic sex determination through in-depth discussion of the evolution of sex chromosomes in amphibians, which is helpful for further exploration of artificially controlling the sex of amphibians.

    参考文献
    Alho J S, Matsuba C, Meril? J. 2010. Sex reversal and primary sex ratios in the common frog (Rana temporaria). Molecular Ecology, 19(9): 1763–1773. Bachtrog D, Mank J E, Peichel C L, et al. 2014. Sex determination: Why so many ways of doing it? Plos Biology, 12(7): e1001899. Bewick A J, Chain F J J, Zimmerman L B, et al. 2013. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biology and Evolution, 5(6): 1087–1098. Brelsford A, Dufresnes C, Perrin N. 2016. Trans-species variation in Dmrt1 is associated with sex determination in four European tree-frog species. Evolution, 70(4): 840–847. Edwards R J, Tuipulotu D E, Amos T G, et al. 2018. Draft genome assembly of the invasive cane toad, Rhinella marina. GigaScience, 7(9): 1–13. Eggert C. 2004. Sex determination:the amphibian models. Reproduction, Nutrition, Development, 44(6): 539–549. Evans B J, Alexander P R, Wiens J J. 2012. Polyploidy and Genome Evolution. Berlin, Heidelberg: Springer Berlin Heidelberg, 385– 410. Flament S. 2016. Sex reversal in amphibians. Sexual Development, 10(5/6): 267–278. Gamble T, Coryell J, Ezaz T, et al. 2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among Gecko sex-determining systems. Molecular Biology and Evolution, 32(5): 1296–1309. Gregory T R. 2005. The Evolution of the Genome. Burlington: Academic Press, 3–87. Geffroy B, Bardonnet A. 2016. Sex differentiation and sex determination in eels: Consequences formanagement. Fish and Fisheries, 17(2): 375–398. Grossen C, Neuenschwander S, Perrin N. 2011. Temperature- dependent turnovers in sex-determination mechanisms: A quantitative model. Evolution, 65(1): 64–78. Grossen C, Neuenschwander S, Perrin N. 2012. The evolution of XY recombination: Sexually antagonistic selection versus deleterious mutation load. Evolution, 66(10): 3155–3166. Guerrero R F, Kirkpatrick M, Perrin N. 2012. Cryptic recombination in the ever-young sex chromosomes of Hylid frogs. Journal of Evolutionary Biology, 25(10): 1947–1954. Guler Y, Short S, Kile P, et al. 2012. Integrating field and laboratory evidence for environmental sex determination in the amphipod, Echinogammarus marinus. Marine Biology, 159(12): 2885–2890. Hammond S A, Warren R L, Vandervalk B P, et al.2017. The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nature Communications, 8(1): 1433. Hellsten U, Harland R M, Gilchrist M J, et al. 2010. The genome of the western clawed frog Xenopus tropicalis. Science, 328(5978): 633. Herrero P, De La Torre J, López-Fernández C, et al. 1993. Heterochromatin heterogeneity in Triturus marmoratus (Urodela: Salamandridae) demonstrated with specific DNA-binding fluorochromes and in situ restriction endonuclease/nick translation. Caryologia, 46(4): 343–353. Hillis D M, Green D M. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. Journal of Evolutionary Biology, 3(1/2): 49–64. Kamiya T, Kai W, Tasumi S, et al. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet, 8(7): e1002798. Kobayashi Y, Nagahama Y, Nakamura M. 2013. Diversity and plasticity of sex determination and differentiation in fishes. Sexual Development, 7(1/3): 115–125. Koopman P, Gubbay J, Vivian N, et al. 1991. Male development of chromosomally female mice transgenic for Sry. Nature, 351(6322): 117–121. Lambert M R, Smylie M S, Roman A J, et al. 2018. Sexual and somatic development of wood frog tadpoles along a thermal gradient. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329(2): 72–79. Matsuba C, Miura I, Merilae J. 2008. Disentangling genetic vs. environmental causes of sex determination in the common frog, Rana temporaria. BMC Genetics, 9: 3. Matsuda M, Nagahama Y, Shinomiya A, et al. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 417(6888): 559–563. Merchant-Larios H, Diaz-Hernandez V. 2013. Environmental sex determination mechanisms in Reptiles. Sexual Development, 7(1/3): 95–103. Miura I. 2007. An evolutionary witness: The frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sexual Development, 1(6): 323–331. Miura I, Ohtani H, Ogata M, et al. 2016. Evolutionary changes in sensitivity to hormonally induced gonadal sex reversal in a frog species. Sexual Development, 10(2): 79–90. Nakamura M. 2009. Sex determination in amphibians. Seminars in Cell and Developmental Biology, 20(3): 271–282. Nowoshilow S, Schloissnig S, Fei J F, et al. 2018. The axolotl genome and the evolution of key tissue formation regulators. Nature, 554(7690): 50–55. Perrin N. 2009. Sex reversal: A fountain of youth for sex chromosomes? Evolution, 63(12): 3043–3049. Qing L, Xia Y, Zheng Y, et al. 2012. A de novo case of floating chromosomal polymorphisms by translocation in Quasipaa boulengeri (Anura, Dicroglossidae). PLoS One, 7(10): e46163. Rieseberg L H. 2001. Chromosomal rearrangements and speciation. Trends in Ecology & Evolution, 16(7): 351–358. Roco A S, Olmstead A W, Degitz S J, et al. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proceedings of the National Academy of Sciences of the United States of America, 112(34): E4752–E4761. Schartl M. 2015. Sex determination by multiple sex chromosomes in Xenopus tropicalis. Proceedings of the National Academy of Sciences of the United States of America, 112(34): 10575–10576. Schmid M, Ohta S, Steinlein C, et al. 1993. Chromosome banding in Amphibia. XIX. Primitive ZW/ZZ sex chromosomes in Buergeria buergeri (Anura, Rhacophoridae). Cytogenetics and Cell Genetics, 62(4): 238–246. Schmid M, Steinlein C, Bogart J P, et al. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenetic and Genome Research, 130/131(1/8): 1–14. Schmid M, Steinlein C, Bogart J P, et al. 2012. The hemiphractid frogs. Phylogeny, embryology, life history, and cytogenetics. Cytogenetic and Genome Research, 138(2/4): 69–384. Session A M, Uno Y, Kwon T, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538(?): 336–343. Sessions S K. 1980. Evidence for a highly differentiated sex chromosome heteromorphism in the salamander Necturus maculosus (Rafinesque). Chromosoma, 77(2): 157–168. Smith C A, Roeszler K N, Ohnesorg T, et al. 2009. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature, 461(7261): 267–271. St?Ck M, Croll D, Dumas Z, et al. 2011. A cryptic heterogametic transition revealed by sex-linked DNA markers in Palearctic green toads. Journal of Evolutionary Biology, 24(5): 1064–1070. Stoeck M, Horn A, Grossen C, et al. 2011. Ever-young sex chromosomes in European tree frogs. PLoS Biology, 9(5): e1001062. Stoeck M, Savary R, Zaborowska A, et al. 2013. Maintenance of ancestral sex chromosomes in Palearctic tree frogs: Direct evidence from Hyla orientalis. Sexual Development, 7(5): 261–266. Sumida M, Nishioka M. 2000. Sex-linked genes and linkage maps in amphibians. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 126(2): 257–270. Sun C, Shepard D B, Chong R A, et al. 2012. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biology & Evolution, 4(2): 168–183. Sun Y B, Xiong Z J, Xiang X Y, et al. 2015. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proceedings of the National Academy of Sciences of the United States of America, 112(11): 1257–1262. Sun Y, Svedberg J, Hiltunen M, et al. 2017. Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nature Communications, 8(1): 1140. Uno Y, Nishida C, Oshima Y, et al. 2008. Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana rugosa, Ranidae) with ZW and XY sex chromosome systems. Chromosome Research, 16(4): 637. Volff J N, Nanda I, Schmid M, et al. 2007. Governing sex determination in fish: Regulatory putsches and ephemeral dictators. Sexual Development, 1(2): 85–99. Wallace H, Wallace B M, Badawy G M. 1997. Lampbrush chromosomes and chiasmata of sex-reversed crested newts. Chromosoma, 106(8): 526–533. Wright A E, Dean R, Zimmer F, et al. 2016. How to make a sex chromosome. Nature Communications, 7: 12087. Yoshimoto S, Okada E, Umemoto H, et al. 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences of the United States of America, 105(7): 2469–2474. Yuan S, Xia Y, Zeng X. 2017. A sex-linked microsatellite marker reveals male heterogamety in Quasipaa boulengeri (Anura: Dicroglossidae). Asian Herpetological Research, 8(3): 184–189. Yuan X, Xia Y, Zeng X. 2018a. Sex chromosomal dimorphisms narrated by X-chromosome translocation in a spiny frog (Quasipaa boulengeri). Frontiers in Zoology, 15(1): 47. Yuan X, Xia Y, Zeng X. 2018b. Suppressed recombination of sex chromosomes is not caused by chromosomal reciprocal translocation in spiny frog (Quasipaa boulengeri). Frontiers in Genetics, 9: 288. 胡梦如. 2016. 雌二醇、温度、猪胎衣对中国林蛙性别及蝌蚪生长发育的影响. 沈阳: 沈阳农业大学硕士学位论文. 李树深. 1991. 两栖动物的染色体及其演化. 动物学杂志, 26(2): 47–52.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龙嘉航,张浓,谢新民,曾聪,向建国,潘望城.2020.两栖动物性染色体的多样性及其 进化机制的研究进展.动物学杂志,55(4):532-539.

复制
文章指标
  • 点击次数:1027
  • 下载次数: 1857
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-01-13
  • 最后修改日期:2020-06-28
  • 录用日期:2020-06-23
  • 在线发布日期: 2020-08-05
  • 出版日期: 2020-08-20