太湖新银鱼线粒体D-loop和Cytb片段序列结构与进化速率比较
作者:
基金项目:

国家自然科学基金项目(No.30570256);安徽省教育厅重点项目(No.KJ2009A052Z);宿州学院人才基金项目(No.2007YSS10)


Molecular Structure and DNA Substitution Rate of the Mitochondrial Control Region and Cytochrome b in Taihu Salangid, Neosalanx taihuensis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    共获得49个太湖新银鱼(Neosalanx taihuensis)个体的线粒体细胞色素b(Cyt b)全序列和控制区(D-loop)部分序列。所测线粒体D-loop部分序列长度变化范围为648~680bp,识别到位于前端的一个串联重复序列、一个终止相关序列(ETAS),3个中央保守区保守序列(CSB-F、CSB-E、CSB-D)及一个保守序列区保守序列(CSB-1),结构与其他鱼类的研究结果类似。太湖新银鱼线粒体Cyt b和D-loop片段的相对进化速率的比较研究结果表明,太湖新银鱼D-loop总的序列多态性位点的比例为0.83%,低于线粒体Cyt b部分总的序列多态性位点的比例(1.31%)。假设太湖新银鱼Cyt b基因平均进化速率相对值为1,贝叶斯(Bayes)MCMC模拟给出Cyt b基因的相对速率区间估计为1.000±0.131,而D-loop基因的相对速率为0.859±0.261,表明太湖新银鱼D-loop基因的进化速率低于Cyt b基因,同时,后验概率分布的变异方差也比较大。说明Cyt b基因比D-loop基因具有相对较高的进化速率,也相对更接近分子钟假设。因此,可以认为Cyt b基因比D-loop基因更适于太湖新银鱼种内及近缘种间相关分子生态及系统地理格局的研究。

    Abstract:

    The structure and related substitution rate of mitochondrial DNA displacement loop ( D-loop) region and cytochrome b ( Cyt b) were comparatively analyzed through Bayesian MCMC simulation in present study. Based on the sequence analysis of mtDNA D-Loop 648-680 bp,the D-Loop structure of this species is similar to that of other fish species containing the extended termination associated sequence domain ( ETAS),the central conserved domain ( CD) and several conserved sequence block ( CSB-F、CSB-E、CSB-D、CSB-1 ) .According to comparative analysis of related substitution rate in Neosalanx taihuensis,the rate of polymorphic loci was lower in D-Loop (0. 83% ) than in Cyt b (1. 31% ) and the interval estimation of related substitution rate is 1. 000 ± 0. 131 in Cyt b and 0. 859 ± 0. 261 in D-Loop,respectively,which indicated that the mutation rates of D-loop were slower than that of Cyt b with large variance of Bayes posterior density distribution in N. taihuensis. It provided evidence that the substitution rate of Cyt b is higher than that of D-Loop,and is more approximate to molecular clock hypothesis,which indicated that Cyt b might be more appropriate molecular marker than D-Loop in studies on molecular ecology and phylogeography for this species.

    参考文献
    [1] Saccone C,Carla D G,Carmela G,et al.Evolutionarygenomics in Metazoa:the mitochondrial DNA as a modelsystem.Gene,1999,238(1):195-209.
    [2] Pereira S L.Mitochondrial genome organization andvertebrate phylogenetics.Genet Mol Biol,2000,23:745-752.
    [3] Rest J S,Ast J C,Austin C C,et al.Molecularsystematics of primary reptilian lineages and the tuataramitochondrial genome.Molecular Phylogenetics andEvolution,2003,29(2):289-297.
    [4] Sbis E,Tanzariello F,Reyes A,et al.Mammalianmitochondrial D-loop region structural analysis:identification of new conserved sequences and theirfunctional and evolutionary implications.Gene,1997,205(1/2):125-140.
    [5] Lunt D H,Whipple L E,Hyman B C.MitochondrialDNA variable number tandem repeats(VNTRs):utilityand problems in molecular ecology.Molecular Ecology,1998,7(11):1441-1455.
    [6] Zardoya R,Meyer A.Cloning and characterization of amicrosatellite in the mitochondrial control region of theAfrican side-necked turtle,Pelomedusa subrufa.Gene,1998,216(1):149-153.
    [7] SanMauro D,García-París M,Zardoya R.Phylogeneticrelationships of discoglossid frogs(Amphibia:Anura:Discoglossidae)based on complete mitochondrial genomesand nuclear genes.Gene,2004,343(2):357-366.
    [8] Buroker N E,Brown J R,Gilbert T A,et al.Lengthheteroplasmy of Sturgeon mitochondrial DNA:Anillegitimate elongation model.Genetics,1990,124(1):157-163.
    [9] Broughton R E,Dowling T E.Length variation inmitochondrial DNA of the Minnow Cyprinella spiloptera.Genetics,1994,138(1):179-190.
    [10] Liu H Z,Tzeng C S,Teng H Y.Sequence variations inthe mitochondrial DNA control region and theirimplications for the phylogeny of the Cypriniformes.Can JZool,2002,80:569-581.
    [11] Taanman J W.The mitochondrial genome:structure,transcription,translation and replication.Biochimica etBiophysica Acta(BBA):Bioenergetics,1999,1410(2):103-123.
    [12] Aquadro C F,Greenberg B D.Human mitochondrial DNAvariation and evolution:analysis of nucleotide sequencesfrom seven individuals.Genetics,1983,103(2):287-312.
    [13] Cann R L,Brown W M,Wilson A C.Polymorphic sitesand the mechanism of evolution in human mitochondrialDNA.Genetics,1984,106(3):479-499.
    [14] Avise J C,Arnold J,Ball R M,et al.Intraespecificphylogeography:the mitochondrial DNA bridge betweenpopulation genetics and systematics.Annual Review ofEcology and Systematics,1987,18:489-522.
    [15] Baker A J,Marshall H D.Mitochondrial control regionsequences as tools for understanding evolution∥Mindell DP.Avian Molecular Systematics.San Diego,Calif:Academic Press,1987,51-82.
    [16] Shedlock A M,Parker J D,Crispin D A,et al.Evolutionof the salmonid mitochondrial control region.MolecularPhylogenetics and Evolution,1992,1(3):179-192.
    [17] Randi E,Lucchini V.Organization and evolution of themitochondrial DNA control region in the avian genusAlectoris.Journal of Molecular Evolution,1998,47(4):449-462.
    [18] Crochet P A,Desmarais E.Slow rate of evolution in themitochondrial control region of Gulls(Aves:Laridae).Mol Biol Evol,2000,17(12):1797-1806.
    [19] Pereira S L,Grau E T,Wajntal A.Molecular architectureand rates of DNA substitutions of the mitochondrial controlregion of cracid birds.Genome,2004,47:535-545.
    [20] Samuels A K,Weisrock D W,Smith J J,et al.Transcriptional and phylogenetic analysis of five completeambystomatid salamander mitochondrial genomes.Gene,2005,349:43-53.
    [21] Bernatchez L,Danzmann R G.Congruence in control-region sequence and restriction-site variation inmitochondrial DNA of Brook Charr(Salvelinus FontinalisMitchill).Mol Biol Evol,1993,10(5):1002-1014.
    [22] Thompson J D,Gibson T J,Plewniak F,et al.TheCLUSTAL_X windows interface:flexible strategies formultiple sequence alignment aided by quality analysistools.Nucl Acids Res,1997,25(24):4876-4882.
    [23] Hixson J E,Clayton D A.Initiation of transcription fromeach of the two human mitochondrial promoters requiresunique nucleotides at the transcriptional start sites.PNAS,1985,82(9):2660-2664.
    [24] Nesbo C L,Arab M O,Jakobsen K S.Heteroplasmy,length and sequence variation in the mtDNA controlregions of three Percid fish species(Perca fluviatilis,Acerina cernua,Stizostedion lucioperca).Genetics,1998,148(4):1907-1919.
    [25] Zhao J L,Wang W W,Li S F,et al.Structure of themitochondrial DNA control region of the Sinipercine Fishesand their phylogenetic relationship.Acta Genetica Sinica,2006,33(9):793-799.
    [26] Tamura K,Dudley J,Nei M,et al.MEGA4:molecularevolutionary genetics analysis(MEGA)software version4.0.Mol Biol Evol,2007,24(8):1596-1599.
    [27] Irwin D,Kocher T,Wilson A.Evolution of thecytochrome b gene of mammals.J Mol Evol,1991,32:128-144.
    [28] Posada D,Crandall K A.MODELTEST:testing the modelof DNA substitution.Bioinformatics,1998,14(9):817-818.
    [29] Goricki S,Trontelj P.Structure and evolution of themitochondrial control region and flanking sequences in theEuropean cave salamander Proteus anguinus.Gene,2006,378:31-41.
    [30] Rambaut A,Drummond A.Tracer v1.4
    [CP/OL] .Available from http:∥beast.bio.ed.ac.uk/Tracer.2007.
    [31] Zhang D X,Hewitt G M.Nuclear integrations challengesfor mitochondrial DNA markers.Trends of Ecology andEvolution,1996,11:247-251.
    [32] 张四明,吴清江,张亚平.中华鲟及相关种类的mtDNA控制区串联重复序列及其进化意义.生物化学与分子生物学报,2000,16(4):458-461.
    [33] 彭巧玲,蒲友光,王志方,等.中华鳖线粒体基因组序列分析.生物化学与分子生物学报,2005,21(5):591-596.
    [34] árnason ú,Johnsson E.The complete mitochondrial DNAsequence of the harbor seal,Phoca vitulina.Journal ofMolecular Evolution,1992,34(6):493-505.
    [35] Arnason U,Gullberg A,Janke A,et al.Pinnipedphylogeny and a new hypothesis for their origin anddispersal.Molecular Phylogenetics and Evolution,2006,41(2):345-354.
    [36] Southern,Southern P,Dizon A.Molecularcharacterization of a cloned dolphin mitochondrial genome.Journal of Molecular Evolution,1988,28(1):32-42.
    [37] Lee J S,Miya M,Lee Y S,et al.The complete DNAsequence of the mitochondrial genome of the self-fertilizingfish Rivulus marmoratus(Cyprinodontiformes,Rivulidae)and the first description of duplication of a control region infish.Gene,2001,280(1/2):1-7.
    [38] 曾青兰,刘焕章.大口胭脂鱼线粒体DNA控制区序列的研究.湖北大学学报:自然科学版,2001,23(3):261-264.
    [39] 刘焕章.鱼类线粒体DNA控制区的结构与进化:以鳑鲏鱼类为例.自然科学进展,2002,12(3):266-270.
    [40] 郭新红,刘少军,刘巧,等.鱼类线粒体研究新进展.遗传学报,2004,31(9):983-1000.
    [41] Arne L,Bernie M,Lutz D,et al.Heteroplasmy in themtDNA control region of Sturgeon(Acipenser,Huso andScaphirhynchus).Genetics,2000,156(4):1933-1947.
    [42] Wolstenholme D R.Animal mitochondrial DNA:Structureand evolution∥Wolstenholme D R,Jeon K W.International Review of Cytology:Mitochondrial Genomes.San Diego,CA:Academic Press,1992,173-216.
    [43] Nei M,Kumar S.Molecular Evolution and Phylogenetics.Oxford:Oxford University Press,2000,29-42.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵亮,谢本贵,刘志瑾,许木启,李明.2010.太湖新银鱼线粒体D-loop和Cytb片段序列结构与进化速率比较.动物学杂志,45(2):27-38.

复制
文章指标
  • 点击次数:2264
  • 下载次数: 4266
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2009-10-12
  • 最后修改日期:2009-12-23