来曲唑对暗纹东方鲀性腺分化及相关基因表达的影响
作者:
基金项目:

上海自然科学基金项目(No.08ZR1407300)


Effects of Letrozole on Gonadal Differentiation and Related Gene Expression in Gonad of Takifugu obscurus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解雌激素在鱼类雌性性别分化中的作用,在克隆暗纹东方鲀(Takifugu obscurus)性腺CYP19ADMRT1基因部分序列基础上,采用不同浓度芳香化酶抑制剂来曲唑 (letrozole, LE)(0、25、125、625、3125 μg/L)处理暗纹东方鲀初孵仔鱼,每个平行组各20尾鱼,观察CYP19ADMRT1基因的表达情况和组织学变化。RT-PCR结果显示:25 μg/L LE实验组中样本CYP19ADMRT1表达水平与对照组相比无显著差异;LE 125 μg/L以上各浓度组中约30%的样本同时表达CYP19ADMRT1基因,且随着LE浓度增加,CYP19A表达量下调,而DMRT1表达量上调;组织学研究表明,125 μg/L LE以上各实验组样本中可见由雌性向雄性转变的间性体性腺。孵化后56d,125 μg/L LE实验组样本中约有20%显示雌性;625 μg/L LE实验组样本显示表型雄性和间性体,未见雌性;最高浓度3125μg/L LE组中所有样本均显示表型雄性,CYP19ADMRT1基因表达与对照组雄性相同。上述结果说明,抑制内源雌激素合成可使暗纹东方鲀仔稚鱼CYP19A基因表达下调,同时DMRT1基因表达上调,并发生雄性化性逆转。

    Abstract:

    In order to elucidate the role of estrogen in the female sex differentiation of Takifugu obscurus, partial sequences of CYP19A and DMRT1 cDNA in gonad of T.obscurus were cloned respectively. T.obscurus flies were exposed to 0, 25, 125, 625, 3 125 μg/L aromatase inhibitor letrozole (LE) to investigates the CYP19A and DMRT1 gene expression and histological changes. RT-PCR results showed that the CYP19A andDMRT1 expression level in 25 μg/L LE group did not differ from that of the control. In about 30% of the samples exposed to 125 μg/L or higher LE, both CYP19A and DMRT1 genes were expressed. With the increase of LE concentration, the CYP19A expression level decreased, while the DMRT1 expression level increased. Histologically, the samples treated with 125 μg/L or higher LE exhibited visible intersex gonads during their sex reversal from female to male. Fifty-six days after hatching, about 20% of the samples treated with 125 μg/L LE showed phenotypic female; the samples treated with 625 μg/L LE showed phenotypic male and intersex, without phenotypic female; all samples treated with 3 125 μg/L LE showed phenotypic male, and their CYP19A and DMRT1 expression levels were consistent with those of the control males. Conclusion: Inhibition of endogenous estrogen synthesis allows CYP19A expression downregulation, and DMRT1 expression upregulation inT.obscurus fly, and the occurrence of female-to-male reversal.

    参考文献
    [1] 桂建芳, 周莉, 吴清江, 等. 鱼类性别和生殖的遗传基础及其人工控制. 北京: 科学出版社, 2007: 1-247.
    [2] Piferrer F, Blázquez M, Navarro L, et al. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). General and Comparative Endocrinology, 2005, 142(1/2): 102-110.
    [3] Lee K H, Yamaguchi A, Rashid H, et al. Germ cell degeneration in high-temperature treated pufferfish, Takifugu rubripes. Sexual Development, 2009, 3(4): 225-232.
    [4] Jin Y X, Shu L J, Huang F Y, et al. Environmental cues influence EDC-mediated endocrine disruption effects in different developmental stages of Japanese medaka (Oryzias latipes). Aquatic Toxicology, 2011, 101(1): 254-260.
    [5] Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 2002, 208(3/4): 191-364.
    [6] Blázquez M, González A, Papadaki M, et al. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). General and Comparative Endocrinology, 2008, 158(1): 95-101.
    [7] 李广丽, 刘晓春, 林浩然. 17α-甲基睾酮对赤点石斑鱼性逆转的影响. 水产学报, 2006, 30(2): 145-151.
    [8] Wang J J, Liu X L, Wang H P, et al. Expression of two cytochrome P450 aromatase genes is regulated disrupting chemicals in rare minnow Gobiocypris rarus juvenile. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2010, 152(3): 313-320.
    [9] Sellin-Jeffries M K, Conoan N H, Cox M B, et al. The anti-estrogenic activity of sediments from agriculturally intense watersheds: assessment using in vivo and in vitro assays. Aquatic Toxicology, 2011, 105(1/2): 189-198.
    [10] Piferrer F, Zanuy S, Carrillo M, et al. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. Journal of Experimental Zoology, 1994, 270(3): 255-262.
    [11] Guiguen Y, Baroiller J F, Ricordel M J, et al. Involvement of estrogens in the process of sex differentiation in two fish species: the rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Molecular Reproduction and Development, 1999, 54(2): 154-162.
    [12] Kwon J Y, McAndrew B J, Penman D J. Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. Journal of Fish Biology, 2002, 60(3): 625-636.
    [13] McAllister B G, Kime D E. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquatic Toxicology, 2003, 65(3): 309-316.
    [14] Uchida D, Yamashita M, Kitano T, et al. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2004, 137(1): 11-20.
    [15] Kawahara T, Yamashita I. Estrogen-independent ovary formation in the medaka fish, Oryzias latipes. Zoological Science, 2000, 17(1): 65-68.
    [16] Suzuki A, Tanaka M, Shibata N. Expression of aromatase mRNA and effects of aromatase inhibitor during ovarian development in the medaka, Oryzias latipes. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 2004, 301(3): 266-273.
    [17] 成庆泰. 我国的河鲀和它的毒素. 生物学通报, 1954, (8): 17-19.
    [18] 李延伸, 戴奇, 郭正龙, 等. 暗纹东方鲀(Takifugu obscurus)性别分化的组织学及芳香化酶基因表达研究. 复旦学报: 自然科学版, 2011,椠挵椰渨朵??愠渶搴‵攭砶瀵爳攮猼獢楲漾湛?椹湝?杙潡湭慡摭獯?潯映?稠敏戮爠慓晥楸猠桤??浦牥瑲????楡潴捩桯敮洯椯捈慯污?愠湗搠??椠潒灡桮祤獡楬捬愠汄?削攮猠敆慩牳捨栠??潹浳浩畯湬楯捧慹琮椠潶湯獬??社???????の???????ね??????扳牳?嬠㈱?崶??攠???????甮?????′地畝??????敲瑥?愠汆???楮晤景散牲敩湮瑥椠慳汥??浣牯瑮??瑯牬愠湳獴捲牡楴灥瑧獩?楳渠?杯潲渠慴摨獥?潦晥?瑩桮敩?灡牴潩瑯慮渠摯牦漠畴獥?扥汯慳捴欠?灩潳牨朮礠???敡浣??捴慵湲瑥栬漠瀲愰朰爱甬猠?猹挷栨氱支朴攩氺椠??改洭????礼瑢潲朾敛渲攱瑝椠捓?慨湵摬??敒渠潗洬攠?剥攠獆敲慡牮捸桡??㈠げ?????づ?????????づ???????扰牥?孭?ぴ嵯?塥楮慥?坩??婩桮漠畦????夠慇潥????敬琠?慮汤???業晰晡敲牡整湩瑶楥愠汅?慤湯摣?獩灮敯牬浯慧瑹漬朠攲渰椱挰?挠攱氶氵?猳瀩攺挠椳昹椰挭?攱砱瀮爼敢獲猾楛漲渲?漠晁??敬浥???删呔??敂浥???摣甠牄椠湃本?獂敲硥?牮攠癍攠牓猬愠汥?椠湡?瀮爠潅瑮潤杯祣湲潩畮獥?桤敩牳浲慵灰桴物潮摧椠瑣楨捥?杩牣潡畬灳攠物獮???潳汨攺挠畄汥慶牥?慯湰摩??攠汥汸異汯慳牵??渠摩潮捤物楣湡潴汯潲杳礠????ば?????????㈠?????????㈠??扦牥?孴?ㄠ嵢?婳桥潤甠?????畣楨???????潦氠敡捣畴汩慯牮?洠敁捱桵慡湴楩獣洠獔?畸湩摣敯牬汯祧楹測朠′猰攰砹?挠根愲渨朳攩?椠渱?核攭爱洷愸瀮格牢潲搾楛琲椳捝?杈牵潡畮灧攠牗猬???楯獵栠?倬栠祌獩椠潚氬漠来祴?慡湬搮??楸潰捲桥敳浳楩獯瑮爠祰???づ?の??????????????????扡牴?孯?㈠嵡?奤愠浰慲杯畭捯桴楥?????敩敶???????畬橹楳浩潳琠潯????敡瑲?慡汮???硯灭牡整獡獳楥漠渨?潥晭 ̄瑃桹数???剭吾?朹攼湥敭 ̄慡渼搯?業琾猱?牥潭氾敡猼?楥湭 ̄攩愠物汮礠?杲潯湴慯摧慹汮?摵敳瘠敨汥潲灭浡数湨瑲?潤晩?瑥栠敲??愭灳慰湯整獴敥?瀠畧晲景敵牰晥楲献栠??敬浥?呵慬歡楲映畡杮畤?牃略扬牬極灬敡獲??敮浤????潮浯灬慯牧慹琬椠瘲攰‰?椬漠挳栰攷洨椱猯琲爩示?愲渲搴?倲栳礶献椼潢汲漾杛礲?偝愠牓瑵?????攬渠潓浨楡捯猠?愠湌搬?偃牨潩琠敊漬洠楥捴猠??金?ご????????????????扥牳?孯??嵥??慩瑮猠潴湨???????甬爠灬桩祶???坡??匠慧牯癮敡牤??????数瑡?慥汳???敩浣???剩味??攨洼?? ̄灏牲敹発敩湡瑳猠?晡整浩慰汥敳?爯敥灭爾漩朠牥慸浰浯楳湥杤?楴湯?瑴桷敯?灡潮獴瑩渭慥瑳慴汲?浧慥浮浳愮氠楃慯湭?瑰敡獲瑡楴獩??丠慂瑩畯牣敨???び????????????????ち??ㄠぃ???扯牸?季??嵯??甠楡杮畤攠湐?奡???潣獯瑬楯敧特???‰倱椱昬攠爱爵攳爨????攳琹′愭水??伮瘼慢牲椾慛渲‵慝爠潒浡慳瑨慩獤攠?愬渠摋?整獡瑮牯漠杈攬渠獌????瀠楈瘬漠瑥慴氠?牬漮氠敆?晧潵爠?朼潥湭愾摔慡汫?獦敵硧?搠楲晵晢敲物数湥瑳椼愯瑥業漾温?慳湥摸?獡敬砠?捩桦慦湥杲敥?楴湩?晴楩獯桮???教湐攱爹愠汲?慧湵摬??潩浯灮愠牡慮瑤椠癡敲??湡摴潡捳牥椠湩潮汨潩杢祩?????の??????????????????evelopment. Sexual Development, 2007, 1(5): 311-322.
    [26] Kobayashi T, Kajiura-Kobayashi H, Guan G J, et al. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Development Dynamics, 2008, 237(1): 297-306.
    [27] Kobayashi T, Matsuda M, Kajiura-Kobayashi H, et al. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Development Dynamics, 2004, 231(3): 518-526.
    [28] Guo Y Q, Cheng H H, Huang X, et al. Gene structure, multiple alternative spl
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪奇,郭正龙,李延伸,云丹,黄波,周忠良.2012.来曲唑对暗纹东方鲀性腺分化及相关基因表达的影响.动物学杂志,47(5):16-23.

复制
文章指标
  • 点击次数:2585
  • 下载次数: 2846
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-02-28
  • 最后修改日期:2012-04-18
  • 在线发布日期: 2012-10-25