无尾两栖类性腺发育研究进展
作者:
作者单位:

1.湖南农业大学动物科学技术学院 长沙 410128;2.常德大北农饲料有限公司 常德 415400

基金项目:

湖南省教育厅科学研究项目(No. 18C0170)


Gonadal Development in Anuran Amphians
Author:
Affiliation:

①College of Animal Science and Technology,Hunan Agricultural University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    脊椎动物的性腺发育一直是生物学领域研究的热点,无尾两栖动物因其胚胎发育的独立性和易观察性而成为发育生物学研究领域的良好材料,并取得了许多成果。本文综述了无尾两栖类原始性腺形成、性腺分化、精巢和卵巢的发育,以及配子发生等方面的研究进展。无尾两栖类原始性腺形成主要发生在鳃盖褶和后肢芽形成时期,不同物种略有不同;性腺分化通常以卵原细胞或卵巢腔出现为标志,但对于部分具有初级性腔的物种并不适用;精巢内支持细胞包围精原细胞形成生精囊,囊内细胞经过一系列事件最终排出精子;卵巢由于卵母细胞发育最终卵巢腔消失,卵母细胞在卵泡内不连续分裂,最后形成卵细胞。无尾两栖动物的性腺发育过程具有一定相似性,但不同物种之间存在差异。

    Abstract:

    The development of vertebrate gonads has been extensively investigated. Anuran amphibians are good animal models in the field of developmental biology because of their embryonic development independence and observabilit. In this paper, we review the research progress on primitive gonad formation, gonadal differentiation and development of testis and ovary, as well as gametogenesis in anuran amphibians. Primitive gonad formation in anuran amphibians occurs mainly during the periods of gill cover fold and hindlimb bud formation, and that different species show slight difference. Gonadal differentiation is usually marked by the presence of oogonias or ovarian cavities, but not for some species with primary sex cavities. Support cells surround the spermatogonia to form a seminal vesicle, and the cells in the vesicle undergo a series of activities to finally discharge the sperm. Ovary is formed eventually, due to the the oocyte development and disappearance of ovarian cavity, and the oocyte divides discontinuously within the follicle and finally form egg cells. The gonadal developmental processes in anuran amphibians are similar, but also show differences between species.

    参考文献
    Abramyan J, Wilhelm D, Koopman P. 2010. Molecular characterization of the Bidder's organ in the cane toad (Bufo marinus). Journal of Experimental Zoology Part B: Molecular & Developmental Evolution, 314(6): 503–513. Aguero T, Kassmer S, Alberio R, et al. 2017. Vertebrate Development: Maternal to Zygotic Control. Cham: Springer, 383–440. Al-Mukhtar K A, Webb A C. 1971. An ultrastructural study of primordial germ cells, oogonia and early oocytes in Xenopus laevis. Development, 26(2): 195–217. Baronsky T, Dzementsei A, Oelkers M, et al. 2016. Reduction in E-cadherin expression fosters migration of Xenopus laevis primordial germ cells. Integrative Biology, 8(3): 349–358. Bartmańska J, Ogielska M. 1999. Development of testes and differentiation of germ cells in water frogs of the Rana esculenta-complex (Amphibia, Anura). Amphibia-reptilia, 20(3): 251–263. Bertocchini F, Chuva de Sousa Lopes S M. 2016. Germline development in amniotes: A paradigm shift in primordial germ cell specification. BioEssays, 38(8): 791–800. Boke E, Ruer M, Wühr M. 2016. Amyloid-like self-assembly of a cellular compartment. Cell, 166(3): 637–650. Bustos-Obregon E, Alliende C. 1973. Spermatogonial renewal in amphibian testis. I. Mitotic activity in the breeding season. Archives of Biology (Bruxelles), 84: 329–339. Butler A M, Owens D A, Wang L. 2018. A novel role for sox7 in Xenopus early primordial germ cell development: mining the PGC transcriptome. Development, 145(1): dev155978. Cavicchia J C, Moviglia G A. 1983. The blood–testis barrier in the toad (Bufo arenarum Hensel): A freeze‐fracture and lanthanum tracer study. The Anatomical Record, 205(4): 387–396. Chavadej J, Jerareungrattana A, Sretarugsa P, et al. 2000. Structure and development of the testis of bullfrog Rana catesbeiana, and their changes during seasonal variation. Science Asia, 26(6): 69–80. Ciaramella V, Meccariello R, Chioccarelli T, et al. 2016. Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus. Molecular and Cellular Endocrinology, 420: 75–84. Crother B I, White M E, Johnson A D. 2016. Diversification and germ-line determination revisited: Linking developmental mechanism with species richness. Frontiers in Ecology and Evolution, 26(4): 1–8. De Felici M. 2016. Molecular Mechanisms of Cell Differentiation in Gonad Development. Cham: Springer, 23–46. De Oliveira C, Vicentini C A, Taboga S R. 2003. Structural characterization of nuclear phenotypes during Scinax fuscovarius spermatogenesis (Anura, Hylidae). Caryologia, 56(1): 75–83. De Oliveira C, Zanetoni C, Zieri R. 2002. Morphological observations on the testes of Physalaemus cuvieri (Amphibia, Anura). Sociedad Chilena de Anatomía, 20(3): 263–268. Dubois R. 1968. La colonisation des ébauches gonadiques par les cellules germinales de l'embryon de Poulet, en culture in vitro. Development, 20(2): 189–213. Dumont J N. 1972. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. Journal of Morphology, 136(2): 153–179. Dzementsei A, Schneider D, Janshoff A, et al. 2013. Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro. Biology open, 2(12): 1279–1287. Eggert C. 2004. Sex determination: the amphibian models. Reproduction Nutrition Development, 44(6): 539–549. El-Jamil A, Magre S, Mazabraud A, et al. 2008. Early aspects of gonadal sex differentiation in Xenopus tropicalis with reference to an antero-posterior gradient. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(3): 127–137. Fabrezi M, Quinzio S I, Goldberg J. 2009. Giant tadpole and delayed metamorphosis of Pseudis platensis Gallardo, 1961 (Anura, Hylidae). Journal of Herpetology, 43(2): 228–243. Falconi R, Dalpiaz D, Zaccanti F. 2004. Ultrastructural aspects of gonadal morphogenesis in Bufo bufo (Amphibia Anura) 1. Sex differentiation. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 301(5): 378–388. Goldberg J. 2015. Gonadal differentiation and development in the snouted treefrog, Scinax fuscovarius (Amphibia, Anura, Hylidae). Journal of Herpetology, 49(3): 468–478. Gosner K L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3): 183–190. Gramapurohit N, Shanbhag B, Saidapur S. 2000. Pattern of gonadal sex differentiation, development, and onset of steroidogenesis in the frog, Rana curtipes. General and Comparative Endocrinology, 119(3): 256–264. Grimaldi C, Raz E. 2020. Germ cell migration—Evolutionary issues and current understanding. Seminars in Cell & Developmental Biology, 100: 152–159. Griswold M D. 2016. Spermatogenesis: the commitment to meiosis. Physiological Reviews, 96(1): 1–17. Haczkiewicz K, Ogielska M. 2013. Gonadal sex differentiation in frogs: how testes become shorter than ovaries. Zoological Science, 30(2): 125–134. Haczkiewicz K, Rozenblut-Ko?cisty B, Ogielska M. 2017. Prespermatogenesis and early spermatogenesis in frogs. Zoology, 122: 63–79. Hayes T B. 1998. Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. Journal of Experimental Zoology, 281(5): 373–399. Hsü C Y, Liang H M. 1970. Sex races of Rana catesbeiana in Taiwan. Herpetologica, 26(2): 214–221. Jamieson-Lucy A, Mullins M C. 2019. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Current Topics in Developmental Biology, 135: 1–34. Jessus C, Munro C, Houliston E. 2020. Managing the Oocyte Meiotic Arrest—Lessons from Frogs and Jellyfish. Cells, 9(5): 1150. Johnson A D, Alberio R. 2015. Primordial germ cells: the first cell lineage or the last cells standing? Development, 142(16): 2730– 2739. Kalt M R. 1976. Morphology and kinetics of spermatogenesis in Xenopus laevis. Journal of Experimental Zoology, 195(3): 393–407. Kaptan E, Murathanoglu O. 2008. Annual morphological cycles of testis and thumb pad of the male frog (Rana ridibunda). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(9): 1106–1114. Kloc M, Bilinski S, Dougherty M T, et al. 2004. Formation, architecture and polarity of female germline cyst in Xenopus. Developmental Biology, 266(1): 43–61. Konduktorova V, Luchinskaya N. 2013. Follicular cells of the amphibian ovary: Origin, structure, and functions. Russian Journal of Developmental Biology, 44(5): 232–244. Lambert M R M. 2018. Sex in the suburbs: The Genetic and Environmental Drivers of Sex Determination in Amphibians. New Haven: Yale University Doctoral Dissertation. Liu L S, Zhao L Y, Wang S H, et al. 2016. Research proceedings on amphibian model organisms. Zoological Research, 37(4): 237–245. Lopez K. 1989. Sex differentiation and early gonadal development in Bombina orientalis (Anura: Discoglossidae). Journal of Morphology, 199(3): 299–311. Mali P V, Gramapurohit N P. 2015. Pattern of gonadal differentiation and development up to sexual maturity in the frogs, Microhyla ornata and Hylarana malabarica: a comparative study. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 323(9): 666–678. Manochantr S, Sretarugsa P, Wanichanon C, et al. 2003. Classification of spermatogenic cells in Rana tigerina based on ultrastructure. Science Asia, 29(3): 241–254. Miura I. 2017. Sex determination and sex chromosomes in amphibia. Sexual Development, 11(5/6): 298–306. Nakamura M. 2009. Sex determination in amphibians. Seminars in Cell & Developmental Biology, 20(3): 271–282. Nakamura M. 2010. The mechanism of sex determination in vertebrates—are sex steroids the key‐factor? Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 313(7): 381–398. Nieuwkoop P D, Faber J. 1956. Normal Tables of Xenopus laevis (Daudin). Amsterdam: North-Holland. Ogielska M. 2009. Reproduction of Amphibians. Enfield: Science Publishers, 1–33. Ogielska M, Kotusz A. 2004. Pattern and rate of ovary differentiation with reference to somatic development in anuran amphibians. Journal of Morphology, 259(1): 41–54. Onjiko R M, Morris S E, Moody S A, et al. 2016. Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo. Analyst, 141(12): 3648–56. Owens D A, Butler A M, Aguero T H. 2017. High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development, 144(2): 292–304. Pancharatna K, Kumbar S, Chandran S. 2000. Phalangeal growth marks related to testis development in the frog Rana cyanophlyctis. Amphibia-reptilia, 21(3): 371–379. Phuge S K, Gramapurohit N P. 2013. Gonadal sex differentiation, development up to sexual maturity and steroidogenesis in the skipper frog, Euphlyctis cyanophlyctis. General and Comparative Endocrinology, 181: 65–71. Pierantoni R, Cobellis G, Meccariello R, et al. 2002. The amphibian testis as model to study germ cell progression during spermatogenesis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132(1): 131–139. Pinto-Erazo M A, Goldberg F J, Jerez A. 2016. Gonadal development in the Neotropical high Andean frog Dendropsophus labialis (Amphibia: Hylidae). Cuadernos de Herpetología, 30 (2): 57–68. Piprek R P, Kloc M, Kubiak J Z. 2014a. Bidder's organ – Structure, development and function. The International Journal of Developmental Biology, 58(10/11/12): 819–827. Piprek R P, Kloc M, Kubiak J Z. 2016. Molecular Mechanisms of Cell Differentiation in Gonad Development. Cham: Springer, 1-22. Piprek R P, Kloc M, Tassan J P, et al. 2017. Development of Xenopus laevis bipotential gonads into testis or ovary is driven by sex-specific cell-cell interactions, proliferation rate, cell migration and deposition of extracellular matrix. Developmental Biology, 432(2): 298–310. Piprek R P, Kubiak J Z. 2014b. Xenopus Development. New Jersey: John Wiley & Sons Inc, 199–214. Piprek R P, Pecio A, Laskowskakaszub K. 2013. Retinoic acid homeostasis regulates meiotic entry in developing anuran gonads and in Bidder's organ through Raldh2 and Cyp26b1 proteins. Mechanisms of Development, 130(11/12): 613–627. Piprek R P, Pecio A, Szymura J M. 2010. Differentiation and development of gonads in the yellow-bellied toad, Bombina variegata L., 1758 (Amphibia: Anura: Bombinatoridae). Zoological Science, 27(1): 47–55. Pudney J. 1995. Spermatogenesis in nonmammalian vertebrates. Microscopy Research and Technique, 32(6): 459–497. Rastogi R K, Bagnara J T, Iela L, et al. 1988. Reproduction in the Mexican leaf frog, Pachymedusa dacnicolor. IV. Spermatogenesis: a light and ultrasonic study. Journal of Morphology, 197(3): 277–302. Rastogi R, Iela L. 1980. Steroids and Their Mechanism of Action in Nonmammalian Vertebrates. New York: Raven Press, 131–146. Rastogi R, Meglio M D, Matteo L D, et al. 1985. Morphology and cell population kinetics of primary spermatogonia in the frog (Rana esculenta)(Amphibia: Anura). Journal of Zoology, 207(3): 319–330. Raz E. 2003. Primordial germ-cell development: the zebrafish perspective. Nature Reviews Genetics, 4(9): 690–700. Rodrigues N, Vuille Y, Loman J, et al. 2015. Sex-chromosome differentiation and ‘sex races’ in the common frog (Rana temporaria). Proceedings of the Royal Society B: Biological Sciences, 282(1806): 20142726. Rozenblut-Ko?cisty B, Piprek R, Pecio A, et al. 2017. The structure of spermatogenic cysts and number of Sertoli cells in the testes of Bombina bombina and Bombina variegata (Bombinatoridae, Anura, Amphibia). Zoomorphology, 136(4): 483–495. Sassone A G, Regueira E, Scaia M F. 2015. Development and steroidogenic properties of the Bidder's organ of the tadpole of Rhinella arenarum (Amphibia, Anura). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 323(3): 137–145. Sato K, Tokmakov A A. 2020. Toward the understanding of biology of oocyte life cycle in Xenopus laevis: No oocytes left behind. Reproductive Medicine and Biology, 19(2): 114–119. Shin Y, Brangwynne C P. 2017. Liquid phase condensation in cell physiology and disease. Science, 357(6357): 1253–1253. Sindelka R, Abaffy P, Qu Y. 2018. Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan. Scientific Reports, 8(1): 1–16. Takamune K, Kawasaki T, Ukon S. 2001. The first and the second mitotic phases of spermatogonial stage in Xenopus laevis: secondary spermatogonia which have differentiated after completion of the first mitotic phase acquire an ability of mitosis to meiosis conversion. Zoological Science, 18(4): 577–583. Takeuchi T, Tanigawa Y, Minamide R, et al. 2010. Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. Mechanisms of Development, 127(1/2): 146–158. Tandon P, Conlon F, Furlow J D, et al. 2017. Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Developmental Biology, 426(2): 325–335. Tanimura A, Iwasawa H. 1988. Ultrastructural observations on the origin and differentiation of somatic cells during gonadal development in the Frog Rana nigromaculata. Development Growth & Differentiation, 30(6): 681-691. Tanimura A, Iwasawa H. 1989. Origin of somatic cells and histogenesis in the primordial gonad of the Japanese tree frog Rhacophorus arboreus. Anatomy and Embryology, 180(2): 165–173. Tarbashevich K, Dzementsei A, Pieler T. 2011. A novel function for KIF13B in germ cell migration. Developmental Biology, 349(2): 169-178. Tarbashevich K, Koebernick K, Pieler T. 2007. XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis. Developmental Biology, 311(2): 554-565. Whittle C A, Extavour C G. 2016. Refuting the hypothesis that the acquisition of germ plasm accelerates animal evolution. Nature Communications, 7(1): 1–11. Witschi E. 1929. Studies on sex differentiation and sex determination in amphibians. III. Rudimentary hermaphroditism and Y chromosome in Rana temporaria. Journal of Experimental Zoology, 54(2): 157–223. Wylie C, Bancroft M, Heasman J. 1976. The formation of the gonadal ridge in Xenopus laevis: II. A scanning electron microscope study. Development, 35(1): 139–148. Yoshida S. 2016. From cyst to tubule: innovations in vertebrate spermatogenesis. Wiley Interdisciplinary Reviews: Developmental Biology, 5(1): 119–131. 陈伟庭, 李东风. 2008. 中国林蛙胚胎期性腺发育的组织学观察. 华南师范大学学报: 自然科学版, 40(1): 36–41. 李桑. 2008. 泽蛙的性腺分化及温度对性别决定的影响. 福建: 福建师范大学硕士学位论文. 李新红, 赵文阁, 郭玉民, 等. 2001.中国林蛙性腺的发育及温度对其性别分化的影响. 动物学研究, 2(5): 351–356. 马玲, 陆宇燕. 2011. 花背蟾蜍性腺分化的组织学观察. 沈阳师范大学学报: 自然科学版, 29(2): 288–292. 梅祎芸, 郑荣泉, 郑善坚, 等. 2018. 棘胸蛙的性腺分化及温度对其性别决定的影响. 生态学报, 38(13): 4809–4716. 张天荫. 1987. 无尾两栖类的原生殖细胞. 细胞生物学杂志, 9(4): 145–149.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张浓,侯金亮,胡亚洲,向建国,潘望城.2021.无尾两栖类性腺发育研究进展.动物学杂志,56(2):290-302.

复制
文章指标
  • 点击次数:822
  • 下载次数: 1993
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-08-25
  • 最后修改日期:2021-02-18
  • 录用日期:2021-02-09
  • 在线发布日期: 2021-04-07