高寒草甸同域分布的高原鼢鼠和高原鼠兔营养生态位及其种间关系
作者:
作者单位:

青海大学畜牧兽医科学院(青海省畜牧兽医科学院),省部共建三江源生态与高原农牧业国家重点实验室 西宁 810016

作者简介:

周睿,男,助理研究员;研究方向:高寒草地小型哺乳动物生态学及鼠害防控;E-mail:zhourui@qhu.edu.cn。

基金项目:

青海省科学技术厅项目(No. 2022-ZJ-964Q),青海大学青年科研基金项目(No. 2021-QNY-7),青海省“高端创新人才”计划项目;


Trophic Niches and Interspecific Relationships of Sympatric Plateau Pika Ochotona curzoniae and Plateau Zokor Myospalax baileyi in Alpine Meadows
Author:
Affiliation:

Academy of Animal Science and Veterinary, Qinghai University (Qinghai Academy of Animal Science and Veterinary), State Key Laboratory of Plateau Ecology and Agriculture, Xining 810016, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | |
  • 资源附件
  • |
  • 文章评论
    摘要:

    了解同域分布高原鼠兔(Ochotona curzoniae)和高原鼢鼠(Myospalax baileyi)的营养生态位竞争关系,对于正确认识高原鼠兔和高原鼢鼠在草地生态系统中的功能和位置,以及科学界定其危害具有重要意义。本研究选择青藏高原高寒草甸优势鼠种——高原鼠兔和高原鼢鼠为研究对象,利用稳定同位素(13C和15N)技术研究二者的营养生态位及种间关系。结果表明:(1)高原鼠兔和高原鼢鼠肝、肌肉、指甲、毛发和骨骼5种组织中稳定氮同位素(δ15N)和稳定碳同位素(δ13C)值在其肝中富集的时间最短,在指甲和骨骼中富集的时间最长,且高原鼠兔上述各组织的δ15N值均显著低于高原鼢鼠,而δ13C值均显著高于高原鼢鼠;(2)高原鼠兔和高原鼢鼠5种组织中,不同组织的营养层次(NR)、摄食来源的多样性水平(CR)、δ13C/δ15N围成的凸多边形总面积(TA)和标准椭圆面积(SEA)由小到大顺序均为:肝、肌肉、指甲、毛发、骨骼,且高原鼠兔5种组织的上述4种指标均显著低于高原鼢鼠;(3)高原鼠兔和高原鼢鼠在肝、肌肉和指甲组织中不存在营养生态位重叠现象,而二者在毛发和骨骼组织中营养生态位重叠度分别为0.92‰2和1.17‰2,且均在雄性种群间发生重叠。综上所述,高原鼠兔和高原鼢鼠的营养生态位仅在长时间尺度上存在重叠,而在短时间尺度上存在明显分化现象。

    Abstract:

    [Objectives] Understanding the competitive relationship of the sympatric Plateau Pika Ochotona curzoniae and Plateau Zokor Myospalax baileyi in their nutritional ecological niches is of significant importance for a proper comprehension of their roles and positions within the grassland ecosystem, as well as scientifically defining their potential hazards. [Methods] This study selected the dominant rodent species in the alpine meadows of the Qinghai-Tibet Plateau (Plateau Pika and Plateau Zokor), as research subjects, utilizing stable isotopes (13C and 15N) technology to investigate their nutritional ecological niches and interspecific relationships. [Results] Results showed that:(1) Enrichment of 15N and 13C stable isotopes in various tissues of the Plateau Pika and Plateau Zokor was shortest in their livers and longest in their claws and bones. The δ15N values in all tissues of the Plateau Pika were significantly lower than those of the Plateau Zokor, while δ13C values were significantly higher; (2) Within the tissues of the Plateau Pika and Plateau Zokor, the order of nutritional levels (NR), dietary diversity levels (CR), total area of the convex polygon formed by δ13C/δ15N (TA), and standardized ellipse area (SEA) were:liver < muscle < claws < fur < bones, and all four indicators in the Plateau Pika’s tissues were significantly lower than those in the Plateau Zokor (Table 2); (3) There was no nutritional niche overlap in liver, muscle and claw tissues of Plateau Pika and Plateau Zokor, but the degree of nutritional niche overlap in hair and bone tissues was 0.92‰2 and 1.17‰2, respectively (Fig. 2). And they all overlap among male populations. [Conclusion] To sum up, the nutritional niche of Plateau Pika and Plateau Zokor overlap only on a long timescale, while there is obvious differentiation on a short time scale.

    参考文献
    Baltensperger A P, Huettmann F, Hagelin J C, et al. 2015. Quantifying trophic niche spaces of small mammals using stable isotopes (δ15N and δ13C) at two scales across Alaska. Canadian Journal of Zoology, 93(7):579–588.
    Bierbaum T J, Mueller L D, Ayala F J. 1989. Density-dependent evolution of life-history traits in Drosophila melanogaster. Evolution, 43(2):382–392.
    Chu B, Ji C P, Zhou J W, et al. 2021. Why does the plateau zokor (Myospalaxfontanieri:Rodentia:Spalacidae) move on the ground in summer in the eastern Qilian Mountains? Journal of Mammalogy, 102(1):346–357.
    Dammhahn M, Randriamoria T M, Goodman S M. 2017. Broad and flexible stable isotope niches in invasive non-native Rattus spp. in anthropogenic and natural habitats of central eastern Madagascar. BMC Ecology, 17(1):16.
    Fry B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography, 33(5):1182–1190.
    Ishikawa N F, Tadokoro K, Matsubayashi J, et al. 2023. Biomass Pyramids of marine mesozooplankton communities as inferred from their integrated trophic positions. Ecosystems, 26(1):217–231.
    Jackson A L, Inger R, Parnell A C, et al. 2011. Comparing isotopic niche widths among and within communities:SIBER-Stable Isotope Bayesian Ellipses in R.Journal of Animal Ecology, 80(3):595–602.
    Layman C A, Arrington D A, Monta?a C G, et al. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88(1):42–48.
    Manlick P J, Pauli J N. 2020. Human disturbance increases trophic niche overlap in terrestrial carnivore communities. Proceedings of the National Academy of Sciences of the United States of America, 117(43):26842–26848.
    Pavelka M S M, Estrada A, Garber P A. 2006. Introduction:behavior and ecology. // Estrada A, Garber P, Pavelka M, et al. New Perspectives in the Study of Mesoamerican Primates:Progress and Prospects. Boston:Springer:243–246.
    Ranganath H A. 2018. Darwin’s finches:a goldmine for evolutionary biologists. Journal of Genetics, 97(4):807–809.
    Robb G N, Harrison A, Woodborne S, et al. 2016. Diet composition of two common mole-rat populations in arid and mesic environments in South Africa as determined by stable isotope analysis. Journal of Zoology, 300(4):257–264.
    Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892):1054–1058.
    Schmidt O, Quilter J M, Bahar B, et al. 2005. Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chemistry, 91(3):545–549.
    Wilson M C, Smith A T. 2015. The pika and the watershed:The impact of small mammal poisoning on the ecohydrology of the Qinghai-Tibetan Plateau. Ambio, 44(1):16–22.
    Zhou R, Hua R, Tang Z S, et al. 2023a. Daily and seasonal activity patterns of Plateau Pikas (Ochotona curzoniae) on the Qinghai- Tibet Plateau, China, and their relationship with weather condition. Animals, 13(10):1689–1701.
    Zhou R, Hua R, Tang Z S, et al. 2023b. Group-living decrease predation risk of individual:Evidence from behavior, hormones and reproduction of plateau pika. Frontiers in Ecology and Evolution, 1(11):1037–1047.
    陈迪, 袁建平, 徐世平, 等. 2009. 西藏冬虫夏草寄主蝠蛾幼虫食性的稳定碳同位素证据. 中国科学 D辑:地球科学, 39(9):1274–1278.
    陈国康, 袁帅, 付和平, 等. 2023. 阿拉善荒漠区两种优势跳鼠种间营养生态位. 生态学报, 43(17):7193–7202.
    陈怀斌. 2016. 肃南县天然草地主要鼠害种类、分布及发生面积. 青海草业, 25(3):50–51.
    盖珊珊, 赵文溪, 宋静静, 等. 2019. 小黑山岛人工鱼礁区许氏平鲉和大泷六线鱼的营养生态位研究. 生态学报, 39(18):6923–6931.
    郭波莉, 魏益民, 潘家荣, 等. 2006. 牛不同组织中稳定性碳同位素组成及变化规律研究. 中国农业科学, 39(9):1885–1890.
    郭乾伟. 2019. 典型草原鼠类优势种群对不同放牧干扰的响应和种群营养生态位研究. 呼和浩特:内蒙古农业大学硕士学位论文.
    姬程鹏. 2017. 祁连山东段高原鼢鼠暖季活动节律及巢域面积变化研究. 兰州:甘肃农业大学硕士学位论文.
    纪炜炜, 李圣法, 陈雪忠, 等. 2015. 基于稳定同位素方法的东海北部及其邻近水域主要游泳动物营养结构变化. 海洋渔业, 37(6):494–500.
    金樑, 孙莉, 崔慧君, 等. 2014. 青藏高原东缘高寒草原有毒植物分布与高原鼠兔、高原鼢鼠的相关性. 生态学报, 34(9):2208–2215.
    康宇坤, 张德罡, 缑晶毅, 等. 2019. 甘南草原高原鼠兔食性及其季节性变化. 甘肃农业大学学报, 54(2):132–138.
    黎道洪, 苏晓梅. 2012. 应用稳定同位素研究广西东方洞食物网结构和营养级关系. 生态学报, 32(11):3497–3504.
    牛克昌, 刘怿宁, 沈泽昊, 等. 2009. 群落构建的中性理论和生态位理论. 生物多样性, 17(6):579–593.
    潘多锋. 2019. 青藏高原高寒草甸草食动物间的相互作用关系及机制. 长春:东北师范大学博士学位论文.
    宋固, 胡梦红, 刘其根. 2014. 运用稳定同位素技术研究千岛湖秋季刺网渔获物的食性和营养级. 上海海洋大学学报, 23(1):117–122.
    苏军虎, Weihong J I, 徐长林, 等. 2017. 甘南草原主要草食动物的食性及其生态位特征. 动物学杂志, 52(3):381–389.
    孙丰梅, 王慧文, 石光雨, 等. 2012. 日粮与牛组织中稳定性碳同位素的相关性研究. 草业学报, 21(2):205–211.
    王德利, 李心诚, 潘多峰, 等. 2016. 青藏高原草地鼠害的生态释义及控制. 西南民族大学学报:自然科学版, 42(3):237–245.
    王凤, 鞠瑞亭, 李跃忠, 等. 2006. 生态位概念及其在昆虫生态学中的应用. 生态学杂志, 25(10):1280–1284.
    王权业, 张堰铭, 魏万红, 等. 2000. 高原鼢鼠食性的研究. 兽类学报, 20(3):193–199.
    王学高, 戴克华. 1990. 高原鼠兔的繁殖空间及其护域行为的研究. 兽类学报, 10(3):203–209.
    吴婷. 2017. 牦牛骨胶原蛋白提取纯化及结构解析. 兰州:甘肃农业大学硕士学位论文.
    杨晓慧. 2017. 青海省草地鼠害防治及高原鼢鼠食性研究. 兰州:兰州大学硕士学位论文.
    叶宏帅, 米玛旺堆. 2023. 高原鼠兔与其他物种间交互作用的研究进展. 湖南生态科学学报, 10(1):113–119.
    易现峰, 李来兴, 张晓爱, 等. 2004. 人工食物对高原鼠兔稳定性碳和氮同位素组成的影响. 动物学研究, 25(3):232–235.
    尹华宝, 余冠军, 王贵林, 等. 2008. 食肉目动物食性研究方法. 安徽大学学报:自然科学版, 32(1):90–94.
    雍仲禹, 郭聪, 张美文, 等. 2011. 啮齿动物食性研究的意义及方法评述. 生态学杂志, 30(11):2637–2645.
    于成. 2018. 高原鼠兔干扰对高寒草甸土壤养分含量影响的空间多尺度分析. 兰州:兰州大学硕士学位论文.
    岳闯, 郭乾伟, 张卓然, 等. 2020. 内蒙古典型草原布氏田鼠营养生态位及其种间关系. 兽类学报, 40(5):424–434.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周睿,宋梅玲,王玉琴,王宏生,马源.2024.高寒草甸同域分布的高原鼢鼠和高原鼠兔营养生态位及其种间关系.动物学杂志,59(6):908-918.

复制
文章指标
  • 点击次数:111
  • 下载次数: 396
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-12
  • 在线发布日期: 2024-12-19