• 首页关于本刊期刊订阅编委会作者指南过刊浏览
龚雪娜,贾婷,张浩,王政昆,朱万龙.2021.横断山不同海拔地区大绒鼠面对高糖 食物变化的生理和行为响应.动物学杂志,56(4):569-581.
横断山不同海拔地区大绒鼠面对高糖 食物变化的生理和行为响应
Physiological and Behavioral Responses of Eothenomys miletus in Different Elevations of Hengduan Mountain to High-sugar Diet
投稿时间:2020-11-24  修订日期:2021-05-13
DOI:10.13859/j.cjz.202104009
中文关键词:  大绒鼠  高糖食物  瘦素  下丘脑神经肽  活动行为
英文关键词:Eothenomys miletus  High-sugar diet  Serum leptin levels  Hypothalamic neuropeptide  Activity behavior
基金项目:国家自然科学基金项目(No. 31760118),云南省中青年学术和技术带头人后备人才项目(No. 2019HB013),云南医药健康学院科学研究项目(No. 2020Y002),云南省教育厅科学研究基金项目(No. 2019Y0047)
作者单位E-mail
龚雪娜 云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室云南师范大学生命科学学院生物能源持续开发利用 教育部工程研究中心云南省生物质能与环境生物技术重点实验室 昆明 650500 2231765491@qq.com 
贾婷 云南经济管理学院 昆明 650106 monica_8209@163.com 
张浩 云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室云南师范大学生命科学学院生物能源持续开发利用 教育部工程研究中心云南省生物质能与环境生物技术重点实验室 昆明 650500 36777914@qq.com 
王政昆 云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室云南师范大学生命科学学院生物能源持续开发利用 教育部工程研究中心云南省生物质能与环境生物技术重点实验室 昆明 650500 wangzk_123@163.com 
朱万龙* 云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室云南师范大学生命科学学院生物能源持续开发利用 教育部工程研究中心云南省生物质能与环境生物技术重点实验室 昆明 650500 zwl_8307@163.com 
摘要点击次数: 525
全文下载次数: 805
中文摘要:
      野外小型哺乳动物通常会表现出生理和行为的变化以应对环境条件的季节性变化,如食物、温度、光照等。为了研究横断山不同地区大绒鼠(Eothenomys miletus)面对不同含糖量食物时的生理和行为适应策略,选取云南剑川和香格里拉地区大绒鼠各26只,喂高糖食物28 d后重喂标准食物28 d,实验共56 d。测定大绒鼠的体重、摄食量、静止代谢率和活动行为,并在0 d、28 d、56 d测定大绒鼠的血清瘦素水平、下丘脑神经肽表达量和身体组成等指标。采用食物平衡法测定摄食量,实时荧光定量PCR测定下丘脑神经肽表达量。数据采用双因素方差分析或双因素协方差分析方法分析,相关性采用Pearson相关分析。结果显示,高糖食物能显著增加两地区大绒鼠的体重(F1, 907 = 8.11,P < 0.01)和摄食量(F1, 907 = 1034.94,P < 0.01),但对静止代谢率和活动行为无显著影响。重喂标准食物后,香格里拉大绒鼠体重能恢复至标准食物组水平,剑川大绒鼠体重仍然较高。瘦素和体重呈正相关(r = 0.80,P < 0.01),和神经肽表达量不相关(P > 0.05)。此外,两个地区大绒鼠生理特征也表现出地区差异,香格里拉大绒鼠较剑川地区大绒鼠有较小的体重(F1, 907 = 842.02,P < 0.01),但静止代谢率(F1, 907 = 6779.51,P < 0.01)和活动行为(F1, 907 = 79.89,P < 0.01)均高于后者。香格里拉大绒鼠较高的摄食量(F1, 907 = 49.96,P < 0.01)可能和其较高的神经肽Y表达量有关(F1, 36 = 4.672,P < 0.05)。以上结果表明,在面对高糖食物时两地区的大绒鼠体重均增加,重喂标准食物后两个地区大绒鼠的体重变化差异显著,表现出了较大的地区间差异。瘦素和神经肽Y表达量可能在上述两个地区大绒鼠的体重调节和能量平衡中占有重要地位。地理位置决定的环境因素(食物资源、温度、海拔)可能是决定生物地区间表型差异和其应对极端环境适应性的核心要素。
英文摘要:
      Small mammals in the wild often show physiological and behavioral changes in response to seasonal environmental variations, such as food, temperature, and photoperiod. To investigate the physiological and behavioral adaptation strategies of Eothenomys miletus in different regions of Hengduan Mountain regions in response to different sugar foods, E. miletus in Jianchuan and Xianggelila were fed a high-sugar diet for 28 d and returned to a standard food for another 28 d, and then their body masses, food intakea, resting metabolic rates (RMR) and activity behaviors were measured. Moreover, serum leptin levels, hypothalamic neuropeptide gene expressions and body compositions were measured on day 0, 28 and 56. Food intake was measured by food balance method, hypothalamic neuropeptide gene expression was measured by real-time fluorescence quantitative polymerase chain reaction (RT-PCR). Data were analyzed by two-way ANOVA or two-way ANCOVA, and associations were judged by Pearson-correlation analysis. The results showed that high-sugar diet could significantly increase the body mass (F1, 907 = 8.11, P < 0.01) (Fig. 1) and food intake (F1, 907 = 1034.94, P < 0.01) (Fig. 2) of the E. miletus in the two regions, but had no significant effect on RMR and activity behavior. After refeeding standard food, the body mass of Xianggelila E. miletus could be restored to the level of standard diet group, while the body mass of Jianchuan E. miletus was still higher. Leptin was positively correlated with body mass (r = 0.80, P < 0.01) (Fig. 5), but not with neuropeptide expression (P > 0.05). In addition, the physiological characteristics of the E. miletus in the two regions also showed regional differences: The E. miletus in Xianggelila had lower body mass (F1, 907 = 842.02, P < 0.01) (Fig. 1) than those in Jianchuan region, but RMR (F1, 907 = 6779.51, P < 0.01) (Fig. 3) and activity behavior (F1, 907 = 79.89, P < 0.01) (Fig. 4) were higher than in Jianchuan area, the higher food intake (F1, 907 = 49.96, P < 0.01) (Fig. 2) may be related to the higher expression of neuropeptide Y (F1, 36 = 4.672, P < 0.05) (Table 3). All of the results showed that body mass of E. miletus in two regions increased when they were exposed to the high-sugar food, but change of body mass in the two regions was significantly different after refeeding, showing a great difference between E miletus in the two regions. Leptin and NPY expression levels may play an important role in body mass regulation and energy balance in E. miletus. Location-determined environmental factors (food resources, temperature, and altitude) may be critical for determining phenotypic differences between biological regions and their adaptation to extreme environmental conditions.
附件
查看全文  查看/发表评论  下载PDF阅读器