猫儿山小鲵和瑶山肥螈消化道组织结构及 5-羟色胺细胞分布特征
作者:
作者单位:

1.珍稀濒危动植物生态与环境保护教育部重点实验室,广西师范大学 桂林 541004;2.广西桂林猫儿山国家级自然保护区管理处 桂林 541000

基金项目:

国家自然科学基金项目(No. 31860609),广西研究生教育创新计划项目(No. XYCSZ 2020058)


Histology and Distribution of 5-Hydroxytryptamine Cells in the Digestive Tract of Hynobius maoershanensis and Pachytriton intexpectatus
Author:
Affiliation:

1.guangxishifandaxue;2.Bureau of Guangxi Mao&3.amp;4.#39;5.er Mountain National Nature Reserve

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨猫儿山小鲵(Hynobius maoershanensis)和瑶山肥螈(Pachytriton intexpectatus)消化道结构的异同及5-羟色胺(5-HT)细胞的分布特征与食性、生活环境之间的关系,运用常规组织染色及免疫组织化学染色法对其消化道进行研究。结果显示,猫儿山小鲵和瑶山肥螈的消化道均包括食道、胃、十二指肠、回肠和直肠,但瑶山肥螈消化道长于猫儿山小鲵。猫儿山小鲵和瑶山肥螈的比肠长(即肠道长与头体长的比值)分别为0.57 ± 0.03(n = 5)和0.84 ± 0.03(n = 5)。两者消化道组织结构均由黏膜层、黏膜下层、肌层和外膜组成,主要差异在消化道黏膜层和肌层厚度。猫儿山小鲵的消化道黏膜层以胃体部最厚,达(712.82 ± 37.67)μm(n = 5),而瑶山肥螈则胃贲门部最厚,为(403.24 ± 55.81)μm(n = 5);二者消化道肌层均以胃幽门部最厚,但瑶山肥螈胃幽门部的肌层厚度比猫儿山小鲵的厚。二者消化道均有开放型和闭合型的5-HT细胞,但5-HT细胞的分布特征不同:猫儿山小鲵分布密度高峰位于直肠,低谷位于食道;瑶山肥螈则在十二指肠部位分布密度最高,直肠最低。综上所述,猫儿山小鲵和瑶山肥螈消化道形态学和组织学结构相似,二者肠道长占头体长的比值均不超过1,符合肉食性动物消化道短的特征。二者消化道5-HT细胞都具有内、外分泌功能,分布密度具有自身的特点,可能与它们的食物组成和生活环境不同有关。

    Abstract:

    Hynobius maoershanensis and Pachytriton intexpectatus are endemic to Guangxi Maoershan National Nature Reserve, China. Their living environments and distribution altitudes are different. H. maoershanensis is inhabited in an alpine swamp at an altitude of 2 000 m with small population size, but P. intexpectatus lives in mountain streams with gentle currents at an altitude of 1 140﹣1 800 m. This study was designed to explore the differences of digestive tracts between H. maoershanensis and P. intexpectatus, and how the 5-hydroxytryptamine cells of digestive tract adapt to their feeding habits and living environments. Anatomical, histological and envision two-step immunohistochemistry staining techniques were used. The total length, head length, body weight, snout-vent length, digestive tract length, and the thickness of mucosa and muscle layers were measured. Statistical analysis and inspection were performed using the Kolmogorov-Simirnov test, Kruskal-Wallis test and Mann-Whitney U test (Microsoft Excel 2016 and SPSS 26.0 software). Results showed that the digestive tracts of H. maoershanensis and P. intexpectatus were composed of esophagus, stomach, duodenum, ileum and rectum (Fig. 1). The digestive tract of P. intexpectatus was longer than that of H. maoershanensis. The ratios of intestine length and snout-vent length in H. maoershanensis and P. intexpectatus were 0.57 ± 0.03 (n = 5) and 0.84 ± 0.03 (n = 5), respectively. The histological structure of the digestive tracts in H. maoershanensis and P. intexpectatus could be divided into mucosa, submucosa, muscularis and adventitia (Fig. 2). There were many glands, such as pyloric glands (Fig. 2e﹣h). The thicknesses of mucosa layer in the stomach body of H. maoershanensis was the highest (712.82 ± 37.67 μm, n = 5), while that of P. intexpectatus was in the cardia (403.24 ± 55.81 μm, n = 5). The thickness of muscular layer of the digestive tract was the highest in the pylorus, with that of P. intexpectatus thicker than in H. maoershanensis. Both open and closed 5-HT cells were distributed in the digestive tracts of H. maoershanensis and P. intexpectatus (Fig. 3), while the distributional patterns of 5-HT cells along the digestive tracts were different. 5-HT cells showed the highest density in the rectum and the least density in the esophagus of H. maoershanensis. But in P. intexpectatus, the highest count was found in the duodenum but the least count in the rectum. In conclusion, the morphological and histological structures of the digestive tracts of H. maoershanensis and P. intexpectatus are similar. The ratios of intestine length to snout-vent length of both were not more than 1, which is consistent with the characteristics of the short digestive tract of carnivorous animals. The 5-HT cells in the digestive tracts of both have endocrine and exocrine functions, but the distributive patterns of these cells have their own characteristics, which may be related to their different feeding habits and living environments.

    参考文献
    Ahlman H, Nilsson O. 2001. The gut as the largest endocrine organ in the body. Annals of Oncology, 12 (2): 63–68. Albrecht M P, Ferreira M F N, Caramaschi E P. 2001. Anatomical features and histology of the digestive tract of two related neotropical omnivorous fishes (Characiformes; Anostomidae). Journal of Fish Biology, 58(2): 419–430. ?inar K. 2002. Immunohistochemical localization of glucagon, substance-P and vasoactive intestinal peptide in gastrointestinal tract mucosa of zander. Journal of Fish Biology, 60(2), 319–327. Elliott J P, Bellwood D R. 2003. Alimentary tract morphology and diet in three coral reef fish families. Journal of Fish Biology, 63(6): 1598–1609. El-Salhy M, Wilander E, Lundquist M. 1985. Comparative studies of serotonin-like immunoreactive cell in the digestive tract of vertebrates. Biomedical Research, 6(6): 371–375. Ezeasor D N, Stokoe W M. 1980. Scanning electron-microscopic study of the gut mucosa of the rainbow-trout salmo-gairdneri richardson. Journal of Fish Biology, 17(5): 529–539. Forte T M, Forte J G. 1970. Histochemical staining and characterization of glycoproteins in acid-secreting cells of frog stomach. Journal of Cell Biology, 47(2): 437–452. French A S, Simcock K L, Rolke D, et al. 2014. The role of serotonin in feeding and gut contractions in the honeybee. Journal of Insect Physiology, 61(100): 8–15. Olsson J, Quevedo M, Colson C, et al. 2007. Gut length plasticity in perch: into the bowels of resource polymorphisms. Biological Journal of the Linnaean Society, 90(3): 517–523. 卜荣平. 2017. 猫儿山小鲵繁殖行为和繁殖期生境选择研究. 桂林: 广西师范大学硕士学位论文. 费梁, 叶昌媛, 江建平. 2012. 中国两栖动物及其分布. 成都: 四川科学技术出版社, 46–47. 国家林业和草原局, 农业农村部. 2021. 国家林业和草原局农业农村部公告(2021年第3号)(国家重点保护野生动物名录). [EB/OL]. [2021-03-10]. http://www.forestry.gov.cn/main/5461/ 20210205/122418860831352. html. 蒋志刚, 江建平, 王跃招, 等. 2016. 中国脊椎动物红色名录. 生物多样性, 24(5): 500–551. 李斌, 陶聪, 黄强. 2009. 高山倭蛙消化道结构初步观察. 四川动物, 28( 2): 241–243. 李淑兰, 刘超, 吕晓慧, 等. 2010. 黑龙江林蛙冬眠和非冬眠消化道内分泌细胞的比较研究. 中国组织化学与细胞化学杂志, 19(3): 245–251. 刘飞, 张轩杰, 刘少军, 等. 2001. 湘云鲫、湘云鲤消化道的组织学研究. 中国水产科学, 8(3): 23–27. 刘家举, 张志强. 2011. 禁食对东方蝾螈胃肠道5-羟色胺细胞形态和分布型的影响. 中国组织化学与细胞化学杂志, 20(3): 246– 251. 刘溯源, 伍亮, 姚利, 等. 2019. 滑鼠蛇消化道5-羟色胺细胞形态和分布密度的增龄变化. 中国组织化学与细胞化学杂志, 28(6): 514–518. 刘新波, 曹雷, 李淑兰. 2011. 东方蝾螈消化道5-羟色胺免疫活性细胞的分布与形态学观察. 四川动物, 30(5): 409–411. 吕九全, 路纪琪, 牛红星, 等. 2000. 商城肥鲵消化道的解剖学观察. 动物学杂志, 35(2): 19–22. 马德滨, 吴伟峰. 2003. 哈尔滨周边地区有尾两栖类的生态学研究. 黑龙江环境通报, 27(1): 53–55. 莫运明, 韦振逸, 陈伟才. 2014. 广西两栖动物彩色图鉴. 南宁: 广西科学技术出版社, 64. 潘黔生, 郭广全, 方之平, 等. 1996. 6种有胃真骨鱼消化系统比较解剖的研究. 华中农业大学学报, 15(5): 463–469. 任春宇, 李淑兰. 2010. 黑龙江林蛙(Rana amure)消化道5-HT细胞的分布及形态学观察. 中国农学通报, 26(14): 94–97. 邵晨, 洪煌明. 2005. 金华地区虎纹蛙消化道形态解剖学观察. 浙江师范大学学报: 自然科学版, 28(2): 197–200. 唐晓雯, 郑一守. 1991. 不同脊椎动物消化道内5-羟色胺免疫染色细胞的分布. 动物学研究, 12(3): 293–298. 王丽敏, 杨纯, 郭俐, 等. 2016. 秦岭滑蜥消化系统组织结构及消化管嗜银细胞观察. 动物学杂志, 51(4): 614–622. 王昱. 2010. 陇南花背蟾蜍消化道解剖学及组织学观察. 天水师范学院学报, 30(5): 26–28. 吴雨函, 熊荣川, 雷飞宙, 等. 2012. 凹耳臭蛙消化系统解剖学及组织学观察. 四川动物, 31(4): 583–588. 肖小柳, 彭东燕, 杜琴, 等. 2014. 红瘰疣螈消化系统组织学观察. 湖北农业科学, 53(12): 2846–2849. 杨贵波, 王平. 1997. 改变食物组成对大鼠胃肠道嗜铬细胞的影响. 动物学报, 43(01): 55–60. 杨元昊, 王立新, 李学智, 等. 2017. 兰州鲇与鲇消化系统的形态学及组织学比较研究. 水生生物学报, 41(1): 174–181. 张志强. 2013. 两栖类消化道嗜银细胞和5-羟色胺细胞的研究进展. 中国组织化学与细胞化学杂志, 22(2): 172–175. 张志强, 吴孝兵. 2010. 爬行类消化道5-羟色胺细胞免疫组化研究进展. 中国组织化学与细胞化学杂志, 19(5): 508–511. 张盛周, 吴孝兵, 陈壁辉. 2002. 虎纹蛙消化道两种内分泌细胞的免疫组织化学定位. 解剖学杂志, 25(3): 275–277. 赵丽丽, 任春宇, 李淑兰. 2018. 极北鲵消化道6种内分泌细胞的免疫组织化学研究. 动物学杂志, 53(4): 589–596. 甄靓靓, 邱枫, 李淑兰, 等. 2007. 非洲爪蟾消化道的5-羟色胺免疫活性细胞. 解剖学杂志, 30(7): 279–282.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈毓,崔甄甄,杨波,宁梅红,武正军,叶建平,黄华苑.2021.猫儿山小鲵和瑶山肥螈消化道组织结构及 5-羟色胺细胞分布特征.动物学杂志,56(4):597-607.

复制
文章指标
  • 点击次数:622
  • 下载次数: 1233
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-02-03
  • 最后修改日期:2021-07-07
  • 录用日期:2021-06-29
  • 在线发布日期: 2021-08-10