笼养鸳鸯肠道微生物组成及其 肠道疾病诱因的探讨
作者:

Gut Microbiota and Their Possible Correlation to Enteritis in Captive Aix galericulata
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肠道微生物能够调节动物机体的物质与能量代谢,参与免疫和疾病预防,对于维持动物的正常生理活动至关重要。本研究基于16S rRNA高通量测序,对患肠炎病和健康群组鸳鸯(Aix galericulata)的肠道微生物进行对比,尝试揭示鸳鸯肠炎可能的致病菌。鸳鸯肠道微生物共鉴定出2 020个相似度97%的操作分类单元(OTU)。健康组和肠炎组共同的OTU数量为564个。健康组鸳鸯的微生物Alpha多样性指数与肠炎组之间无显著差异(Mann Whitney U test,P > 0.05)。在门水平,鸳鸯的肠道微生物组成以厚壁菌门(Firmicutes)(73.46%)、拟杆菌门(Bacteroidetes)(11.15%)和变形菌门(Proteobacteria)(8.72%)为主。在属水平,丰度最高的类别主要包括狭义梭菌属(Clostridium sensu stricto 1)(29.65%)、库特氏菌属(Kurthia)(24.74%)和乳杆菌属(Lactobacillus)(12.40%)。健康组和肠炎组鸳鸯肠道微生物组成存在显著差异(Adonis,F = 3.608 7,P < 0.05)。在肠炎组中共筛选出25个相对丰度显著高于健康组的类别,其中,狭义梭菌属、埃希氏志贺菌属(Escherichia-Shigella)和脱硫菌属(Desulfovibrio)的相对丰度最高(线性判别分析LDA值 > 5,P < 0.05),这3个属的致病菌可能造成肠道微生物群落失衡,机体免疫力下降,是诱发鸳鸯肠炎的重要因素。

    Abstract:

    Gut microbiota regulate the material and energy metabolism of organism and participate in immunity and disease prevention, which is helpful to maintain the normal physiological activities of animals. Aix galericulata was selected to explore the possible mechanism of microbiota- inducing enteritis in birds. Two scientific questions were concerned: 1) which (several) bacteria may induce enteritis in A. galericulata? What kind of pathogenic mechanism may cause enteritis in A. galericulata? High-throughput sequencing was utilized to analyze the gut microbiota of both healthy animals and those with enteritis, and comparisons were carried out on the diversity and composition between the two groups. A total of 2020 97% operational taxon units (OTUs) were identified from the gut microbiota of A. galericulata. The number of common OTUs in healthy group and enteritis group was 564 (Fig. 2). The alpha diversity index of healthy group was higher than that of enteritis group, but without significance (P > 0.05). At phylum level, Firmicutes (73.46%), Bacteroidetes (11.15%) and Proteobacteria (8.72%) were the main compositions of the gut microbiota in A. galericulata (Fig. 3). At genus level, Kurthia (24.74%) and Lactococcus (8.47%) were the most abundant taxa in healthy group, and Clostridium sensu stricto 1 (29.65%) and Lactobacillus (12.40%) were main components in enteritis group. There is significant difference in gut compositions between healthy group and enteritis group (P < 0.05). In the enteritis group, a total of 25 microbial classifications were found significantly higher than those of healthy group. Among them, Clostridium_sensu_stricto_1, Escherichia-Shigella and Desulfovibrio bacteria are the most abundant (liner dicriminant analysis value > 5, P < 0.05) (Fig. 6). Clostridiales, Desulfovibrionaceae and Bacillales play important function in the gut of A. galericulata (Fig. 7). The conclusion is that the high contents of Clostridium_sensu_stricto_1, Escherichia-Shigella and Desulfovibrio may destroy the balance of intestinal microbial community, cause the decline of immunity, and then serve as important factors inducing the enteritis of A. galericulata.

    参考文献
    Ahern P P, Faith J J, Gordon J I. 2014. Mining the human gut microbiota for effector strains that shape the immune system. Immunity, 40(6): 815–823. Barko P C, McMichael M A, Swanson K S, et al. 2018. The gastrointestinal microbiome: A review. Journal of Veterinary Internal Medicine, 32(1): 9–25. Bisson-Boutelliez C, Massin F, Dumas D, et al. 2010. Desulfovibrio spp. survive within KB cells and modulate inflammatory responses. Molecular Oral Microbiology, 25(3): 226–235. Claesson M, Cusack S, O’Sullivan O, et al. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences the United States of America, 108(Suppl 1): 4586–4591. Dai Z L, Jing Z, Wu G Y, et al. 2010. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids, 39(5): 1201–1215. Dominianni C, Sinha R, Goedert J J, et al. 2015. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One, 10(4): e0124599. Gibson G, Macfarlane G, Cummings J H. 1993. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut, 34(4): 437–439. Grond K, Sandercock B K, Jumpponen A, et al. 2018. The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biology, 49(11): e01788. He S D, Zhang Z Y, Sun H J, et al. 2019. Potential effects of rapeseed peptide maillard reaction products on aging-related disorder attenuation and gut microbiota modulation in dgalactose induced aging mice. Food & Function, 10(7): 4291–4303. Hird S M, Carstens B C, Cardiff S W, et al. 2014. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ, 2(10): e321. Kohl K D. 2012. Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182(5): 591–602. Malmuthuge N, Griebel P J, Guan L L. 2015. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Frontiers in Veterinary Science, 2: 36. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. 2006. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomics approach. Digest of the World Core Medical Journals, 55(2): 205–211. Moen A E F, Lindstrom J C, Tannaes T M, et al. 2018. The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients. Scientific Report, 8(1): 17278. Morgan X C, Tickle T L, Sokol H, et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology, 13(9): R 79. Nagano Y, Itoh K, Honda K. 2012. The induction of Treg cells by gut-indigenous Clostridium. Current Opinion in Immunology, 24(4): 392–397. Peterson C T, Sharma V, Elmen L, 2015. Immune homeostasis dysbiosis and therapeutic modulation of the gut microbiota. Clinical and Experimental Immunology, 179(3): 363–377. Pickard J M, Zeng M Y, Caruso R, et al. 2017. Gut microbiota: Role in pathogen colonization, immune responses and inflammatory disease. Immunology Review, 279(1): 70–89. Rowan F, Docherty N G, Murphy M, et al. 2010. Desulfovibrio bacterial species are increased inulcerative colitis. Diseases of the Colon & Rectum, 53(11): 1530–1536. Schirmer M, Garner A, Vlamakis H, et al. 2019. Microbial genes and pathways in inflammatory bowel disease. Nature Reviews Microbiology, 17: 497–511. Waite D W, Taylor M. 2015. Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 6:1–12. Wang W, Zheng S, Sharshov K, et al. 2016. Distinctive gut microbial community structure in both the wild and farmed Swan goose (Anser cygnoides). Journal of Basic Microbiology, 56: 1–9. Wienemann T, Schmitt-Wagner D, Meuser K, et al. 2011. The bacterial microbiota in the ceca of Capercaillie (Tetraourogallus) differs between wild and captive birds. Systematic & Applied Microbiology, 34(7): 542–551. Yue S, Liping Z, Lingdong F, et al. 2015. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet. Frontiers in Microbiology, 6: 877. 崔潇. 2020. 炎症性肠病肠道菌群16S-rRNA基因测序分析及益生菌对不同时期肠炎的影响. 济南: 山东大学硕士学位论文. 董元秋. 2019. 越冬白头鹤肠道微生物群落结构组成的时空变化及其影响因素的研究. 合肥: 安徽大学博士学位论文. 杜菲, 王瑞红, 曹健, 等. 2021. 新疆不同栖息地赤麻鸭肠道菌群多样性研究. 微生物学报,网络首发: [J/OL]. [2021-07-15]. https://doi.org/10.13343/j.cnki.wsxb.20200635. 高泽中. 2020. 不同季节杂色山雀肠道微生物组成及与免疫关系的研究. 沈阳: 辽宁大学硕士学位论文. 刘倩, 宋文涛, 樊国印, 等. 2020. 高通量测序在鸟类肠道微生物中的研究进展. 中国人兽共患病学报, 36(12): 1025–1043. 沈佳斌, 张雪敬, 吴蔚, 等. 2016. 雉科鸟类肠道微生物的多样性与功能及其对食性的适应. 南京师大学报: 自然科学版,39(2): 90–95. 吴田田, 宋光. 2020. 溃疡性结肠炎与肠道微生物群关系进展. 现代消化及介入诊疗, 25(12): 1695–1698. 杨预展. 2016. 长江中下流域草食性雁食性及肠道微生物研究. 合肥: 中国科学技术大学硕士学位论文. 赵广红. 2016. 升金湖越冬白头鹤(Grus monacha)肠道微生物菌群结构及其时间变化. 合肥: 安徽大学硕士学位论文.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张佰莲,马珺,刘群秀.2021.笼养鸳鸯肠道微生物组成及其 肠道疾病诱因的探讨.动物学杂志,56(6):908-917.

复制
文章指标
  • 点击次数:552
  • 下载次数: 1426
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-03-08
  • 最后修改日期:2021-10-27
  • 录用日期:2021-10-25
  • 在线发布日期: 2021-12-01
  • 出版日期: 2021-12-20