麝鼠肠道纤维素分解菌的分离鉴定及其酶学特性分析
作者:
基金项目:

重庆市基本科研业务费项目(No. cstc2020jxjl-jbky130002),国家自然科学基金项目(No. 81973428)


Isolation, Identification and Enzymatic Characteristics of Cellulolytic Bacteria from the Intestinal Tract of Muskrats
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    本研究旨在从麝鼠(Ondatra zibethicus)肠道中分离出高效分解纤维素的菌株,为开发纤维素分解菌微生物制剂提供菌种资源。本研究利用以羧甲基纤维素钠(CMC-Na)为单一碳源的培养基,从麝鼠盲肠内分离出一株高效分解纤维素的菌株WJ-3,并对该菌株进行形态鉴定、生理生化鉴定和16S rDNA分子鉴定。对菌株WJ-3所产羧甲基纤维素酶(CMCase)进行酶学特性实验,分析此纤维素酶的最佳反应pH和最佳反应温度,以及此纤维素酶对不同温度和不同酸碱度的耐受性。结果表明,菌株WJ-3属于空气芽孢杆菌(Bacillus aerius),并将其命名为Bacillus aerius WJ-3。菌株WJ-3所产羧甲基纤维素酶在pH 4.0 ~ 6.0的范围内反应时,酶活性随pH值升高而增加,其最佳反应pH为6.0,且此纤维素酶在pH 4.0 ~ 8.0范围内保存30 min后均能保持80%以上的相对酶活性;菌株WJ-3所产羧甲基纤维素酶在温度30 ~ 50 ℃范围内反应时,随温度上升酶活性逐渐增加,在50 ℃时酶活性最高,之后随温度的升高酶活性逐渐下降,且纤维素酶在此温度范围内保存30 min后均能保持较高的酶活性。综上所述,菌株Bacillus aerius WJ-3所产羧甲基纤维素酶的酶活性较高,并且此纤维素酶的耐酸碱性及热稳定性良好,是具有一定利用价值的菌种资源。

    Abstract:

    [Objectives] The purpose of this study was to isolate strains capable of efficiently decomposing cellulose from the intestines of Muskrat (Ondatra zibethicus), so as to provide strain resources for the development of microbial preparations of cellulose decomposing bacteria. [Methods] Six cellulose decomposing bacteria were isolated from the cecum of Muskrat using the culture medium with sodium carboxymethyl cellulose (CMC-Na) as the only carbon source. The Congo red staining experiment and the determination of carboxymethyl cellulase (CMCase) activity were carried out. Bacterium strain WJ-3 with highly efficient cellulose decomposing activity was screened, and further identified by morphological observation, physiological and biochemical analysis as well as 16S rDNA gene sequencing approach. The 16S rDNA gene sequence was analyzed by BLAST in national center for biotechnology information (NCBI), and the phylogenetic tree was constructed by MEGA 6.0 software. The enzymatic characteristics of CMCase produced were tested to analyze the optimal reaction pH and temperature of the cellulase, as well as the tolerance of the cellulase to different temperatures and pH values. Ultimately, all the data were processed with Spss 23.0 software. [Results] A strain WJ-3 with efficient cellulose decomposing activity was identified and it was agram-positive, spore-forming, and rod-shaped bacterium (Fig. 2, Fig. 3). The physiological and biochemical test results of strain WJ-3 were shown in Table 2. By the 16S rDNA gene sequence analysis, strain WJ-3 was identified as Bacillus aerius, and named Bacillus aerius WJ-3 (GenBank Accession: MZ 292092.1). The phylogenetic tree of strain WJ-3 was shown in Figure. 5. When the CMCase produced by strain WJ-3 reacted in the range of pH 4.0﹣6.0, the enzyme activity increased with the increase of pH value, and the best reaction pH was 6.0 (Fig. 6), and the cellulase could maintain more than 80% of the relative enzyme activity after being stored in the range of pH 4.0﹣8.0 for 30 min (Fig. 7); When the CMCase produced by strain WJ-3 reacted in the temperature range of 30﹣50 ℃, the enzyme activity gradually increased with the increase of temperature, the enzyme activity was the highest at 50 ℃ (Fig. 8), and then the enzyme activity of CMCase decreased with the increase of temperature, the cellulase could maintain high enzyme activity after being stored in the temperature range of 30﹣50 ℃ for 30 min (Fig. 9). [Conclusion] The enzyme activity of CMCase produced by strain Bacillus aerius WJ-3 is relatively high, with satisfactory acid and alkali resistance as well as thermal stability. It is a strain resource with certain utilization value.

    参考文献
    Bedford M R. 2000. Exogenous enzymes in monogastric nutrition- their current value and future benefits. Animal Feed Science and Technology, 86(1/2): 1–13. Brownawell A M, Caers W, Gibson G R, et al. 2012. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. Journal of Nutrition, 142(5): 962–974. Kamra D N. 2005. Rumen microbial ecosystem. Current Science, 89(1): 124–135. Lee Y J, Kim B K, Lee B H, et al. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2): 378–386. Mawadza C, Hatti-Kaul R, Zvauya R, et al. 2000. Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology, 83(3): 177–187. Scarpellini M, Mora D, Colombo S, et al. 2002. Development of genus/species-specific PCR analysis for identification of Carnobacterium strains. Current Microbiology, 45(1): 24. Zhang T X, Zhang M S, Shi M H, et al. 2021. Musk secretion in Muskrats (Ondatra zibethicus L.): association with lipid and cholesterol metabolism-related pathways. Biocell, 45(2): 281–306. 曹晓燕, 汪珊如, 徐雯, 等. 2015. 竹鼠肠道中厌氧纤维素降解菌的分离与鉴定. 动物营养学报, 27(6): 1976–1982. 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册. 北京: 科学出版社, 43–66. 高云航, 勾长龙, 王雨琼, 等. 2014. 1株高效低温纤维素分解菌的分离鉴定及产酶条件优化. 中国兽医杂志, 50(12): 77–79. 宫秀杰, 钱春荣, 于洋, 等. 2021. 近年纤维素降解菌株筛选研究进展. 纤维素科学与技术, 29(2): 68–77. 何静, 李国伟, 海勒, 等. 2019. 双峰驼粪便中纤维素分解菌的筛选及酶学特性分析. 西北农业学报, 28(11): 1750–1759. 华树芳, 佟煜人, 宋建华, 等. 1988. 家养麝鼠食性(植物部分)的初步观察. 动物学杂志, 23(2): 23–26. 计成. 2008. 动物营养学. 北京: 高等教育出版社, 54–64. 康纪婷, 吴翔, 甘炳成, 等. 2010. 纤维素酶活力测定方法. 河北农业科学, 14(4): 151–153. 李臣光, 安培培, 王大涛, 等. 2020. 麝鼠香腺发育及腺细胞培养分离的初步研究. 兽类学报, 40(2): 175–182. 李艳宾, 张琴, 滕立平, 等. 2016. 1株拮抗棉花枯、黄萎病菌的纤维素分解菌筛选. 西北农业学报, 25(11): 1730–1735. 刘燕, 张宏福, 孙哲. 2007. 纤维素酶的分子生物学与基因工程研究进展. 饲料工业, 28(18): 11–14. 孙玲红. 2016. 鹅盲肠产纤维素酶细菌的分离鉴定及酶学性质研究. 合肥: 安徽农业大学硕士学位论文. 孙孟喜. 2017. 耐盐纤维素分解菌群的筛选及其餐厨垃圾乙醇发酵方式的研究. 广州: 华南农业大学硕士学位论文. 王成章. 2011. 饲料学. 2版. 北京: 中国农业出版社, 18–19. 王光琴, 黄莺, 温明霞, 等. 2021. 5株纤维菌属菌株的分离、鉴定及产酶活性研究. 中国农学通报, 37(15): 112–119. 王平. 2010. 牛瘤胃中纤维素降解菌的分离鉴定及对玉米秸秆发酵效果的研究. 郑州: 河南农业大学硕士学位论文. 王平, 王朋朋, 左瑞雨, 等. 2010. 牛瘤胃中米曲霉的分离鉴定及对玉米秸秆降解效果的研究. 河南农业大学学报, 44(3): 295–299. 王霞, 华琳, 张海龙, 等. 2017. 纤维素降解菌CMC-4的分离鉴定、诱变和酶学特性研究. 土壤, 49(5): 919–925. 杨伟平. 2015. 藏猪肠道细菌群落组成与纤维素分解菌的研究. 咸阳: 西北农林科技大学博士学位论文. 杨伟平, 丁雅倩, 马梦柯, 等. 2019. 动物粪便中纤维素分解菌的分离和鉴定. 家畜生态学报, 40(2): 75–79. 杨伟平, 孟凡旭, 马丽, 等. 2014. 藏香猪源纤维素分解菌的分离鉴定及酶学特性分析. 动物营养学报, 26(3): 620–629. 叶代勇, 黄洪, 傅和青, 等. 2006. 纤维素化学研究进展. 化工学报, 57(8): 1782–1791. 赵喜印. 1995. 麝鼠的生活习性与行为特点. 贵州畜牧兽医, 19(3): 41–42. 中华人民共和国农业农村部. 2020. NY/T 912-2020饲料添加剂纤维素酶活力的测定分光光度法. 北京: 中国农业出版社. 朱靖, 严志堂. 1965. 麝鼠的食性和食物基地. 动物学报, 17(4): 352–363. 朱旭芬. 2010. 现代微生物学实验技术. 浙江: 浙江大学出版社, 32–47.
    相似文献
    引证文献
引用本文

吴佳勇,封孝兰,曾德军,谌颖莲,竭航.2022.麝鼠肠道纤维素分解菌的分离鉴定及其酶学特性分析.动物学杂志,57(1):143-151.

复制
文章指标
  • 点击次数:606
  • 下载次数: 1206
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-06
  • 最后修改日期:2022-01-05
  • 录用日期:2022-01-04
  • 在线发布日期: 2022-01-19
  • 出版日期: 2022-02-20