性激素变化对小鼠肠道菌群构成的影响
作者:
作者单位:

北京林业大学生态与自然保护学院 北京 100091

基金项目:

北京林业大学大学生创新创业训练计划项目(No. X202110022211),北京市自然科学基金项目(No. 5202016)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肠道菌群在维持宿主免疫和消化系统功能方面发挥着重要作用,肠道菌群的多样性和丰富度是衡量宿主健康状况的重要生理指标。性激素对动物生长发育发挥重要作用,但其对肠道菌群构成影响的相关实验研究相对较少。本研究以模式生物小鼠(Mus musculus)为对象,探究性激素的变化对小鼠肠道菌群构成的影响。采用外科手术方式建立小鼠去势模型,通过16S rRNA高通量测序技术,研究性激素对小鼠肠道菌群构成的影响。研究结果表明,雌性小鼠和雄性小鼠去势后,性激素水平显著下降。肠道菌群在门水平上,正常小鼠和去势小鼠肠道细菌群落均由拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、埃普西隆杆菌门(Epsilonbacteraeota)、髌骨细菌门(Patescibacteria)、放线菌门(Actinobacteria)、软壁菌门(Tenericutes)、脱铁杆菌门(Deferribacteres)、酸杆菌门(Acidobacteria)和蓝藻细菌门(Cyanobacteria)组成,主要菌群为厚壁菌门和拟杆菌门物种,两门占物种相对丰度百分比达80%以上。Alpha多样性计算结果表明,雌性小鼠与雄性小鼠的正常组与去势对照组间的微生物区系均匀度无显著差异,Beta多样性结果进一步表明,正常组与去势组之间微生物区系结构无显著差异。由上述结果可以得到结论,性激素变化没有引起小鼠肠道菌群构成的差异。

    Abstract:

    [Objectives] Gut microbiota plays an important role in immune function and gastrointestinal system. The diversity and richness of gut microbiota are important physiological index to measure host health. Sex hormones play an important role on the growth and development of animals, but the effect of sex hormones on gut microbiota composition is not clear. [Methods] In this study, a mouse (Mus musculus) castration model was established by surgical method, fresh fecal samples of mice were continuously observed and collected during feeding, and the effects of sex hormones on the intestinal flora of mice were studied by 16S rRNA high-throughput sequencing technology. Usearch was applied to cluster reads with similarity above 97.0% and generate OTUs. Taxonomic annotations of feature sequences were processed by Bayesian classifier using SILVA as reference database. Statistics on composition in each sample were calculated at level of phylum, class, order, family, genus and species. QIIME was applied to obtain abundance of each species in samples, and distribution histogram at each taxonomic level were generated by certain R package. Alpha diversity metrics were evaluated by QIIME2. Beta diversity analysis was processed by QIIME. Blood was collected from the mice after they were fed for one month. The contents of estradiol and testosterone in serum of mice were determined by radioimmunoassay (RIA). [Results] Sex hormone levels in female and male mice decreased significantly after ovulation (Table 1). At phylum level, the intestinal bacterial communities of both normal mice and castrated mice were composed of Bacteroidetes, Firmicutes, Proteobacteria, Epsilonbacteraeota, Patescibacteria, Actinobacteria, Tenericutes, Deferribacteres, Acidobacteria and Cyanobacteria (Fig. 4). The populations of major bacteria found in normal and castrated mice were similar, with Firmicutes and Bacteroides as the dominant flora, and the sum of relative abundance percentages of the two flora was more than 80% (Table 4). Alpha diversity showed no significant difference in microflora evenness between the normal group and the castrated group (Table 5). Beta diversity showed no significant difference in microflora structure between the normal group and the castrated group. Followings are Beta diversity analysis based on four distance matrices: PCA analysis; PERMANOVA analysis and UPGMA analysis (Fig. 8). [Conclusion] The change of sex hormones did not cause the difference in the composition of the intestinal flora of mice.

    参考文献
    Bolnick D I, Snowberg L K, Hirsch P E, et al. 2014. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 5(1): 2041–1723.
    Castoria G, Lombardi M, Barone M V, et al. 2004. Rapid signalling pathway activation by androgens in epithelial and stromal cells.Steroids, 69(8/9): 517–522.
    Eckburg P B, Bik E M, Bernstein C N, et al. 2005. Diversity of the human intestinal microbial flora. Science, 308(5728): 1635–1638.
    Elderman M, Sovran B, Hugenholtz F, et al. 2017. The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS ONE, 12(9): e0184274.
    Ferrando A A, Sheffield-Moore M, Yeckel C W, et al. 2002. Testosterone administration to older men improves muscle function: Molecular and physiological mechanisms. Journal of Physiology: Endocrinology and Metabolism, 282(3): 601–607.
    Georget V, Térouanne B, Nicolas J C, et al. 2002. Mechanism of antiandrogen action: Key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry, 41(39): 11824–11831.
    Gresse R, Chaucheyras-Durand F, Fleury M A, et al. 2017. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol, 25(10): 851–873.
    Haro C, Rangel-Zuniga O A, Alcala-Diaz J F, et al. 2016. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE, 11(5): e0154090.
    Kadi F. 2008. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. British Journal of Pharmacology, 154(3): 522–528.
    Koboziev I, Reinoso Webb C, Furr K L, et al. 2014. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radical Biology and Medicine, 68(3): 122–133.
    Markle J G, Frank D N, Mortin-Toth S, et al. 2013. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 339(6123): 1084–1088.
    Mueller S, Saunier K, Hanisch C, et al. 2006. Differences in fecal microbiota in different European study populations in relation to age gender and country: A cross-sectional study. Applied and Environmental Microbiology, 72(2): 1027–1033.
    Pace F, Watnick P I. 2021. The interplay of sex steroids, the immune response, and the intestinal microbiota. Trends in Microbiology, 29(9): 849–859.
    Reebye V, Querol Cano L, Lavery D N, et al. 2012. Role of the HSP90-associated cochaperone p23 in enhancing activity of the androgen receptor and significance for prostate cancer. Molecular Endocrinology, 26(10): 1694–1706.
    Simó R, Sáez-López C, Barbosa-Desongles A, et al. 2015. Novel insights in SHBG regulation and clinical implications. Trends Endocrinology, Diabetes & Metabolism, 26(7): 376–83.
    Tsukahara T, Kishino E, Inoue R, et al. 2013. Correlation between villous height and the disaccharidase activity in the small intestine of piglets from nursing to growing. Animal Science Journal, 84(1): 54–59.
    杜欣颖, 夏介英, 李东晓, 等. 2021. 健康与腹泻林麝肠道菌群的多态性. 中国微生态学杂志, 33(7): 745–751.
    范中正, 董万涛, 刘保健, 等. 2021. MicroRNA通过肠道菌群对绝经后骨质疏松症影响的机制探讨. 中国微生态学杂志, 33(9): 1100–1103.
    郭在清. 2015. 更年期综合征人体肠道微生物群落结构研究. 中国微生态学杂志, 27(4): 477–479.
    黄树武, 闵凡贵, 王静, 等. 2021. 常用小鼠、大鼠肠道菌群比较研究. 中国实验动物学报, 29(6): 777–784.
    纪文明, 刘泉, 刘率男, 等. 2022. 糖尿病治疗药物调控肠道微生态及肠降糖激素的研究状况. 中国临床药理学杂志, 38(2): 180–184.
    柯善林. 2021. 肠道菌群随宿主年龄的动态变化以及对宿主衰老和病原体感染的影响研究. 南昌: 江西农业大学博士学位论文.
    李鑫洁, 陈建新, 鲁艺. 2022. 锁阳乙酸乙酯提取物对阿尔茨海默病小鼠肠道菌群紊乱的调节作用. 中医学报, 37(1): 126–134.
    刘俊希, 王舒, 魏祯, 等. 2022. 中药有效成分通过调节肠道菌群及代谢物组成影响相关疾病治疗作用概述. 中医药学报, 50(2): 92–97.
    聂小燕, 林师庆, 何应沛, 等. 2022. 猪在不同阶段肠道微生物的变化及其对营养物质代谢的影响. 黑龙江畜牧兽医, (11): 39–44.
    曲巍, 张智, 马建章, 等. 2017. 高通量测序研究益生菌对小鼠肠道菌群的影响. 食品科学, 38(1): 214–219.
    邵凡, 段金琳, 李俊英, 等. 2013, 去势对母鸡第二性征发育的影响观察. 中国家禽, 35(17): 48–49.
    孙宏莱, 谢雨瞳, 刘悦, 等. 2022. 基于高通量测序技术研究毛水苏多糖对糖尿病小鼠肠道菌群的影响. 中国食品添加剂, 33(9): 10–18.
    陶俊, 周漫, 李艳. 2021. 肠道菌群与雄激素的相互作用及对冠心病发病的影响研究进展. 疑难病杂志, 20(8): 842–845.
    王悦, 苏力, 陈兴永, 等. 2018. 基于16S rRNA测序的海南坡鹿肠道菌群结构分析. 野生动物学报, 39(4): 761–768.
    吴敏, 刘作华, 齐仁立. 2022. 肠道微生物调控动物肌肉的生长和发育. 动物营养学报, 31(9): 3976–3982.
    谢梦琪, 张诗雨, 许荔立, 等. 2021. 不同性别和生长阶段对克氏原螯虾肠道菌群多样性的影响. 水生生物学报, 45(6): 1243–1254.
    袁欣, 陈瑞敏. 2020. 肠道菌群的性别二态性及其潜在影响机制. 生理科学进展, 51(4): 248–252.
    赵金华, 徐明, 朱美君, 等. 2021. 药物难治性癫痫患儿的肠道菌群变化观察. 山东医药, 61(27): 14–17.
    赵启群, 孟旭辉. 2008. 雄激素治疗对 PADAM 男子红细胞生成的影响. 南京医科大学学报: 自然科学版, 28(9): 1177–1179.
    朱丽慧, 廖荣荣, 杨长锁. 2018. 肠道微生物对家禽肠道免疫功能的调节作用及其机制. 动物营养学报, 30(3): 820–828.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

封暖暖,杨鹏程,赵浩汐,张晨曦,蒋元琳,韩香雨,胡德夫,刘树强.2023.性激素变化对小鼠肠道菌群构成的影响.动物学杂志,58(2):263-276.

复制
文章指标
  • 点击次数:341
  • 下载次数: 1033
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-22
  • 最后修改日期:2023-02-08
  • 录用日期:2023-01-17
  • 在线发布日期: 2023-04-28
  • 出版日期: 2023-04-20