环境因子对甘南高寒草甸地表大型节肢动物多样性的影响
作者:
作者单位:

1.哈尔滨师范大学生命科学与技术学院 哈尔滨 150080;2.中国林业科学研究院生态保护与修复研究所 北京 100091

基金项目:

国家重点研发计划项目(No.2017YFC0504802)


Characteristic of Ground-Dwelling Macroarthropods Community in Alpine Meadow of Gannan Region
Author:
Affiliation:

1.Haerbin normal University,Haerbin,Heilongjiang,150080;2.China;3.Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    地表节肢动物是生态系统的重要生物指示物,研究甘南高寒草甸地表节肢动物群落多样性与环 境因子的关系,有助于揭示其分布格局对高寒草甸生态环境变化的响应。2018 年5 至9 月,采用陷阱 法调查甘南高寒草甸4 种典型类型生境,即沼泽湿地、沼泽化草甸、草甸和成熟草甸地表大型节肢动 物群落组成与多样性。研究时段共采集地表大型节肢动物2 545 头,属于3 纲9 目29 科30 属,以狼蛛 属(Lycosa)、弓背蚁属(Camponotus)和蚁属(Formica)为优势类群。营养功能群以捕食类和植食类 为主。研究结果显示,成熟草甸生境大型节肢动物类群数明显高于沼泽化草甸和草甸生境的类群数 (P < 0.05);沼泽湿地生境Pielou 均匀度指数(Js)明显大于草甸和成熟草甸生境的Pielou 均匀度指数 (P < 0.05);Shannon-Wiener 多样性指数(H′)差异不显著(P > 0.05);4 种生境之间地表大型节肢动 物群落相似性指数较低。研究时段基于物种“出现-不出现”C-score、V-ratio、SES 与Pianka 生态重叠 指数的实测值与预测值的差异均没有规律性,显示研究区域地表大型节肢动物群落随机性与竞争性格 局共存,受随机扩散与生态过滤共同影响。置换多元方差分析(PerMANOVA)表明,研究区域生境特 征(R2 = 0.636 4,P < 0.001)比研究时间(R2 = 0.157 3,P < 0.001)能更多地解释地表大型节肢动物群 落变化。土壤主要理化性质显著地影响了地表大型节肢动物群落特征,其中,土壤温度和土壤含水量 对地表大型节肢动物群落影响最大。基于距离的冗余分析(db-RDA)结果表明,土壤理化性质与地上 生物量仅共同解释了地表大型节肢动物群落变异的29.88%,其他70.12%的变异没有得到解释,显示地 表大型节肢动物群落形成的复杂性。

    Abstract:

    [Objectives] Ground-dwelling macroarthropods are important indicators of soil ecosystem. Studying the characteristics of community of ground-dwelling macroarthropods in alpine meadows is helpful to reveal the response of its distribution pattern to the change of alpine meadow ecological factors. [Methods] From May to September 2018, we investigated ground-dwelling macroarthropods community composition and diversity by pitfall traps at four typical alpine meadow habitats (swamp wetland, swamp meadow, meadow and mature meadow). The principal coordinate analysis (PCoA) was used to explain the similarities or differences in ground-dwelling macroarthropods community from different habitats. Permutational multivariate analysis of variance (PerMANOVA) tests the significance of community distinctions among habitats and sampling time. Variance partitioning analysis (VPA) was used to evaluate the soil environmental factors, above ground biomass and sampling time on ground-dwelling maroarthropods community. The influence of specific soil environmental factors on the dynamics of ground-dwelling maroarthropods community structure was analyzed by distance-based redundancy analysis (db-RDA). [Results] A total of 2 545 individual ground-dwelling macroarthropods were collected from May to September 2018, belonged to 30 genera of 29 families, 9 orders, 3 classes. The dominant groups were Lycosa, Camponotus and Formica, and predators and herbivores were dominant in trophic groups (Table 2). The number of ground-dwelling macroarthropod groups in habitat of mature meadow was significantly higher than that of habitats of swamp meadow and meadow (P < 0.05); the Pielou evenness index (Js) of habitat of swamp wetland was significantly higher than that of habitats of meadow and mature meadow (P < 0.05); Shannon-Wiener diversity index (H′) had no significant difference (P > 0.05) among habitats, and the similarity index of ground-dwelling macroarthropod communities between habitats was low (Table 3). Among the Checkerboard score of the matrix (C-score), variance ratio (V-ratio), standardized effect size based on binary data, the Pianka niche overlap, the difference between the observed and simulated values have not regularity, suggesting that the ground-dwelling macroarthropods community assemblage was randomness and competition coexist, and that is structured simultaneously by both random diffusion and ecological filtering (Table 5). PerMANOVA analysis showed that the habitat characteristics of the study area (R2 = 0.636 4, P < 0.001) could more explain the changes of the ground-dwelling macroarthropods community characteristics than seasons (R2 = 0.157 3, P < 0.001). The characteristics of the ground-dwelling macroarthropods community was affected significantly by soil physicochemical properties, of which soil temperature and soil moisture content have the greatest impacts (Fig. 2). The distance based on redundancy analysis (db-RDA) showed that the soil physicochemical properties and aboveground biomass explained 29.88% of the variation of the ground-dwelling macroarthropods community, while the other 70.12% of the variation was not explained, indicating the complexity of the formation of the ground-dwelling macroarthropods community (Fig.3). [Conclusion] The result showed that the ground-dwelling macroarthropods community changed with different habitats and seasons. The effects of habitats on ground-dwelling macroarthropods composition were much greater than those of seasons.

    参考文献
    Aupic-Samain A, Baldy V, Delcourt N, et al. 2021. Water availability rather than temperature control soil fauna community structure and prey-predator interactions. Functional Ecology, 35(7): 1550–1559.
    Balkenhol B, Haase H, Gebauer P, et al. 2018. Steeplebushes conquer the countryside: Influence of invasive plant species on spider communities (Araneae) in former wet meadows. Biodiversity Conservation, 27(1): 2257–2274.
    Bestion E, Cote J, Jacob S, et al. 2009. Habitat fragmentation experiments on arthropods: What to do next?Current Opinion in Insect Science, 35(10): 117–122.
    Borges F, Oliveira M, Almeida T, et al. 2021. Terrestrial invertebrates as bioindicators in restoration ecology: A global bibliometric survey. Ecological Indicators, 125(suppl 4): 107458.
    Costantini E A C, Branquinho C, Nunes A, et al. 2016. Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth, 7(2): 397–414.
    Cushing P E. 2012. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology, 2012(2): 1–23.
    Daniel G M, Noriega J A, da Silva P G, et al. 2022. Soil type, vegetation cover and temperature determinants of the diversity and structure of Dung Beetle assemblages in a South African open woodland and closed canopy mosaic. Austral Ecology, 47(1): 79–91.
    Gallé R, Samu F, Zsigmond A R, et al. 2019.Even the smallest habitat patch matters: On the fauna of peat bogs. Journal of Insect Conservation, 23(12): 699–705.
    Huhta V. 2007. The role of soil fauna in ecosystems: A historical review. Pedobiologia, 50(6): 489–495.
    Johari A, Hermanto M A, Wulandari T. 2021. Ant diversity inhabited oil palm plantations in a peatland in Sumatra, Indonesia. Nusantara Bioscience, 13(2): 158–163.
    Johnston A S A, Sibly R M. 2020. Multiple environmental controls explain global patterns in soil animal communities. Oecologia, 192(4): 1047–1056.
    K?dzior R, Zarzycki J, Zaj?c E. 2022. Raised bog biodiversity loss: A case-study of ground beetles (Coleoptera, Carabidae) as indicators of ecosystem degradation after peat mining. Land Degradation and Development, 33(1): 3511–3522.
    Lehmitz R, Haase H, Otte V, et al. 2020. Bioindication in peatlands by means of multi-taxa indicators (Oribatida, Araneae, Carabidae, Vegetation). Ecological Indicators, 109(20): 105837.
    Liu X, Chen Y, Li Z, et al. 2021. Driving Forces of the changes in vegetation phenology in the Qinghai-Tibet Plateau. Remote Sensing, 13(23): 4952.
    Mhlanga L, Kapembeza C, Sithole R, et al. 2022. Variation in ground insect diversity, composition and abundance across land use types in an African Savanna, Zimbabwe. Scientific African, 16(133): e01204.
    Pozsgai G, Quinzo-Ortega L, Littlewood N A. 2022. Grazing impacts on ground beetle (Coleoptera: Carabidae) abundance and diversity on semi-natural grassland. Insect Conservation and Diversity, 15(1): 36–47.
    Raven J A. 2022. Interactions between above and below ground plant structures: Mechanisms and ecosystem services. Frontiers of Agricultural Science and Engineering, 9(2): 197–213.
    Salas-López A, Violle C, Munoz F, et al. 2022. Effects of habitat and competition on niche partitioning and community structure in Neotropical ants. Frontiers in Ecology and Evolution, 10(6): 863080.
    Santana M da S, Andrade E M, Oliveira V R, et al. 2021.Trophic groups of soil fauna in semiarid: Impacts of land use change, climatic seasonality and environmental variables. Pedobiologia, 89(10): 150774.
    Swift M J, Heal O W, Anderson J M. 1979. Decomposition in Terrestrial Ecosystems. Oxford: Blackwell, 1–49.
    Sylvain Z A, Wall D H, Cherwin K L, et al. 2014. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: Insight from a cross-site study. Global Change Biology, 20(8): 2631–2643.
    Tizado E J, Nú?ez-Pérez E. 2016. Terrestrial arthropods in the initial restoration stages of anthracite coal mine spoil heaps in northwestern spain: Potential usefulness of higher taxa as restoration indicators. Land Degradation and Development, 27(4): 1131–1140.
    Truchy A, G?the E, Angeler D G, et al. 2019. Partitioning spatial, environmental, and community drivers of eco-system functioning. Landscape Ecology, 34(3): 2371–2384.
    Tsafack N, Wang X, Xie Y, et al. 2021. Niche overlap and species co-occurrence patterns in carabid communities of the northern Chinese steppes. ZooKeys, 1044(7): 929–949.
    Uhey D A, Riskas H L, Smith A D, et al. 2020. Ground-dwelling arthropods of pinyon-juniper woodlands: Arthropod community patternsare driven by climate and overall plant productivity, not host tree species. PLoS ONE, 15(8): e0238219.
    Wang R, Wang M, Wang J, et al. 2021. Habitats are more important than temporal shifts in shaping soil bacterial communities on the Qinghai-Tibetan Plateau. Microorganisms, 9(8): 1595.
    丁新峰, 郝广, 董轲, 等. 2019. 平茬处理对小叶锦鸡儿灌丛邻居植物群落空间格局的影响. 生态学报, 39(11): 4011–4020.
    高梅香, 何萍, 孙新, 等. 2014. 环境筛选、扩散限制和生物间相互作用在温带落叶阔叶林土壤跳虫群落构建中的作用. 科学通报, 59(24): 2426–2438.
    刘旻霞, 张娅娅, 李全弟, 等. 2021. 甘南高寒草甸植物群落物种多度分布特征. 中国环境科学, 41(3): 1405–1414.
    马维伟, 王辉, 李广, 等. 2017. 甘南尕海湿地退化过程中植被生物量变化及其季节动态. 生态学报, 37(15): 5091–5101.
    史赟荣, 沈新强, 王云龙. 2016. 海湾鱼类群落物种共存机制——以湄洲湾为例. 中国水产科学, 23(1): 169–176.
    王京, 金屿淞, 黄勇杰, 等. 2020. 采伐胁迫对大兴安岭针阔混交林地表节肢动物群落的长期影响. 林业科学, 56(12): 177–186.
    王京, 李成一, 卓玛姐, 等. 2022. 基于地表土壤动物与植物完整性指数评估若尔盖沼泽湿地受扰现状. 生态学报, 42(1): 340–347.
    王瑞, 王京, 李昕蔚, 等. 2020. 甘南高寒草甸土壤线虫营养功能群的地统计学分析. 动物学杂志, 55(6): 741–751.
    杨晓理. 2019. 高寒草甸不同优势植物对土壤线虫群落的直接和间接作用及其机制. 兰州: 兰州大学硕士学位论文, 9–11.
    姚宝辉, 王缠, 张倩, 等. 2019. 甘南高寒草甸退化过程中土壤理化性质和微生物数量动态变化. 水土保持学报, 33(3): 138–145.
    尹文英. 1998. 中国土壤动物检索图鉴. 北京: 科学出版社, 1–392.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘志涛,王莹,高铸成,丁敏,叶董,王京,王瑞,林英华.2023.环境因子对甘南高寒草甸地表大型节肢动物多样性的影响.动物学杂志,58(2):237-249.

复制
文章指标
  • 点击次数:219
  • 下载次数: 987
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-08-18
  • 最后修改日期:2023-03-21
  • 录用日期:2023-03-13
  • 在线发布日期: 2023-04-28
  • 出版日期: 2023-04-20