横纹金蛛捕食经验对其丝纤维力学行为与性能的影响
作者:
作者单位:

井冈山大学生命科学学院,井冈山大学商学院,井冈山大学生命科学学院,中山大学生命科学学院,井冈山大学生命科学学院,井冈山大学生命科学学院,四川大学生命科学学院

作者简介:

蒋平, 男, 副教授; 研究方向: 蜘蛛生物学; 天然动物蛋白纤维结构与性能

基金项目:

国家自然科学基金项目(No. 31160420,31060282,30760041),江西省自然科学基金项目(No. 2010GQN120),江西省科技厅青年科学家培养对象项目(No. 20133BCB23022)


Effect of the prey experience on tensile behavior and properties of silk fiber from Argiope bruennichi
Author:
Affiliation:

College of Life Sciences, Jinggangshan University,Business college, Jinggangshan university,College of Life Sciences, Jinggangshan University,College of Life Sciences, Sun Yet-san University,College of Life Sciences, Jinggangshan University,College of Life Sciences, Jinggangshan University,College of Life Sciences, Sichuan University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    蛛网是蜘蛛的捕食工具, 蛛网网丝的结构与性能不仅影响蜘蛛的捕食效率,也关系着蜘蛛的捕食投入。本文利用单纤维电子强力仪研究横纹金蛛(Argiope bruennichi)室内捕食面包虫(Tenebrio molitor)时上前与返回捕食拖丝的力学性能以及捕食经验对圆网半径丝修补前后的力学性能的影响。结果表明,与上前捕食拖丝相比,返回捕食拖丝减小了弹性区的投入,增加了屈服区和加强区的投入,且返回时捕食拖丝更具柔韧性。整体而言,与初始半径丝相比,在未喂食面包虫的条件下,网的半径修补丝增加了力学性能的投入;而在喂食面包虫的条件下,网的半径修补丝减少了力学性能的投入。所测试丝样中出现了两种类型的蛛丝力学行为:一种为典型的蛛丝力学行为;另外一种是具有黏流性材料的力学行为,其反映的是满足蛛丝耗散猎物或自身下降时动能的另外一种力学性能的策略。本研究表明蜘蛛能根据其捕食经验遵循Cost-Benefit原则对蜘蛛丝的力学性能进行调节,从而调整捕食投入。

    Abstract:

    Webs are used to capture prey, therefore the structure and mechanical properties of the webs can affect the efficiency of prey capture and foraging investment. Is there an Effect of the prey experience on tensile behavior and properties of silk fiber? In this paper, tensile properties of forward and returning preying dragline silk, when A. bruennichi preyed on T. molitor and the effects of the predator experience on tensile properties of radius silk before and after mending were examined and investigated using electric single-fiber tensile apparatus. The data dealt with Spass 17.0. Figure 1 and table 1 show that compared with forward preying dragline silk (Du=12.2±2.5 mm, Fu=5.12±0.53 cN), return preying dragline silk reduces investment in the elastic region and increases investment in the yield and hardening region(Du=23.94±0.50 mm, Fu=8.07±3.70 cN, PD=0.001<0.01, PF=0.242>0.05), moreover returning preying dragline silk present higher toughness. Figure 2 and table 2 show that compared with initial radius silk (Du=7.18 mm, Fu=0.51 cN), radius mending silk under no feeding T. molitor increases investment of tensile properties (Du=9.73±0.94 mm, Fu=3.37±0.85 cN). However, radius mending silk under feeding T. molitor reduces investment of tensile properties (control silk:Du=21.93 mm, Fu=9.877cN, mending silk:Du=18.47±3.43 mm, Fu=3.01±1.4 cN). In addition, Figure 1 and 2 also demonstrated that two types of tensile behaviors present in tested samples of spider silk: one is the typical of tensile behavior similar with dragline silk; the other one is the tensile behavior of material of the viscous flow, which reflects the tensile properties, is the strategy of another kind of materials. It can content with the demand that spider silk dissipate absorb kinetic energy of prey and spider itself when it fall down. This study shows that spider can adjust mechanical properties of spider silk according its prey experience following cost-benefit principles in order to adjust prey inputs.

    参考文献
    Agnarsson I, Dhinojwala A, Sahni V and Blackledge T A. Spider silk as a novel high performance biomimetic muscle driven by humidity. The Journal of Experimental Biology, 2009, 212: 1990-1994.
    Buehler M J. Multiscale aspects of mechanical properties of biological materials . Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(2): 125-127.
    Brown C P, Rosei F, Traversa E and Licoccia S. Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications. Nanoscale, 2011, published online.
    Beek JV, K?ummerlen D, Vollrath F, Meier BH. Solid state NMR on supercontracted spider dragline silk. Int. J. Biol. Macromol, 1999, 24: 173 -178.
    Chmiel K, Herberstein M E, Elgar M A. Web damage and feeding experience influence web site tenacity in the orb-web spider Argiope keyserlingi Karsch. Animal Behaviour , 2000, 60 :821~826.
    Frische S, Maunsbach AB, Vollrath F. Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy. Journal of Microscopy, 1998, 189: 64-70.
    Gosline J M, Demont M E, Denny M W. The strucure and properties of spider silk. Endeavor, 1986, 10:37-43.
    Grip S. Artificial Spider Silk Recombinant Production and Determinants for Fiber Formation. Doctoral Thesis. 2008.
    Garrido M.A.,Elices M.,Viney C.,P?rez-Rigueiro J.The variability and interdependence of spider drag line tensile properties. Polymer, 2002, 43( 16):4495-4502
    Guinea G. V, Elices M, Perez2Rigueiro J, Plaza G. R. Stretching of Supercontracted Fibers : a Link between Spinning and t he Variability of Spider Silk. J . Exp . Biology , 2005 ,208 : 25-30.
    Himan M B, Jones J A, Lewis R V. Synthetic spider silk: a modular fiber . Trends in Biotechnology, 2000, 18: 374-379.
    Heiling A M, Herberstein M E. The web of Nuctenea sclopetaria (Araneae ,Araneidae) : Relationship between body size and web design. Journal of Arachnolog,1998 ,26 : 91-961
    Herberstein M E ,Heiling A M. Asymmetry in spider orb webs : a result of physical constraints ? Animal Behaviour ,1999 ,58 :1 241-1 2461
    Hayashi CY, Shipley NH, Lewis RV. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J.Biol. Macromol, 1999, 24: 271-275.
    Kubik S. High-Performance fibers from spider silk . Angew.chem. Int. Ed, 2002, 41: 2721-2723.
    Lammel A S, Hu X, Park S H, Kaplan D L and Scheibel T R. Controlling silk fibroin particle features for drug delivery. Biomaterials, 2010, 31(16): 4583-4591.
    Maynes E, Mann S, Vollrath F. Fabrication of Magnetic Spider Silk and Other Silk-Fiber Composites Using Inorganic anoparticles. Advanced Material, 1998, 10: 801-805.
    Schneider J M, Vollrath F. The effect of prey type on the geometry of the capture web of Araneus diadematus. Naturwissenschaften ,1998 ,85 :391-3941
    Venner S,S Pasquet A,SLeborgne R. Web-building behaviour in the orb-weaving spiderSZygiella x-notata: influence of experience. Animal Behaviour. 2000, 59(3):603-611.
    Vollrath F. Strength and structure of spider’ silks. Biological Macromolecules, 2000, 74: 67-83.
    Vollrath F, Downes M, Krackow S. Design variability in web geometry of an orb2weaving spider. Physiology Behavior ,1997 ,62 (4) :735-7431
    Vollrath F. Strength and structure of spider’ silks. Biological Macromolecules, 2000, 74: 67-83.
    Vollrath, F. Spider webs and silk. Sci. Am, 1992 (266): 70-76.
    Vollrath F. Biology of spider silk . International Journal of Biological Macromolecules, 1999, 24: 81-88.
    Venner S, Bel-Venner M C , Pasquet A , et al. Body-mass-dependent cost of web-building behavior in an orb weaving spider , Zygiella x2notata. Naturwissenschaften ,2003 ,90 : 269-2721
    杨湧, 陈新, 周平,等. 不同温度下桑蚕丝的力学性能.S高等学校化学学报,2001,(22) :1592 -1596.
    蒋平, 吴梦玲, 肖永红, 周兵, 廖信军, 郭聪. 棒络新妇卵袋丝氨基酸组成及其力学性能. 纺织学报. 2010a, 31(5)1-5.
    蒋平,吕太勇, 肖永红, 曾建忠, 周兵, 郭聪. 悦目金蛛和棒络新妇卵袋丝物理化学结构表征及其力学性能研究.生物物理学报. 2010b,26(2):149-163
    蒋平, 刘辉芬, 肖永红, 等. 棒络新妇和悦目金蛛拖丝超微结构与力学行为. 四川动物, 2010c, 29(1): 1 -6
    蒋平, 乔圆圆, 肖永红, 柯坫华, 魏雪, 刘亮, 江丽琴. 横纹金蛛多次产卵生物量分配初步研究. 动物学杂志. 2011a,46(2) :90 -96.
    蒋平, 吕太勇, 肖永红, 江丽琴, 熊超群, 郭聪. 横纹金蛛卵袋结构与纤维组成. 动物学杂志. 2011b,46( 4) : 92-101.
    蒋平, 吕太勇, 肖永红, 刘海英, 刘亮, 熊超群, 江丽琴, 郭聪. 三种不同功能蛛丝的超微结构与拉伸力学行为. 材料科学与工程学报. 2011c, 29 (5): 734 - 741.
    卓春晖, 蒋平, 王昌河, 郭聪. 蛛网结构性能及其适应性.四川动物. 2006, 25(4): 898 -902.
    引证文献
引用本文

蒋平,吴丽华,江丽琴,肖永红,廖信军,刘科,郭聪.2014.横纹金蛛捕食经验对其丝纤维力学行为与性能的影响.动物学杂志,49(4):587-596.

复制
文章指标
  • 点击次数:2404
  • 下载次数: 2972
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-07-04
  • 最后修改日期:2014-07-03
  • 录用日期:2014-02-14
  • 在线发布日期: 2014-07-17