洄游型、淡水型和陆封型刀鲚的寄生蠕虫群落结构
作者:
作者单位:

中国科学院水生生物研究所,中国科学院水生生物研究所

基金项目:

现代农业产业技术体系建设专项资金(CARS4608), 国家自然科学基金项目(No. 30600459, 31272695)


Helminth Communities in Coilia nasus from Anadromous, Freshwater and Landlocked Stocks
Author:
Affiliation:

Institute of Hydrobiology, Chinese Academy of Sciences,Institute of Hydrobiology,Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于对淡水环境的适应和江湖阻隔, 部分洄游型刀鲚(Coilia nasus)分化成淡水型和陆封型, 为寻找区分洄游型、淡水型和陆封型这3种生态型刀鲚的寄生虫标志, 并分析其寄生蠕虫群落结构特征, 本文调查了 3种生态型刀鲚鳃部、胃、肠和幽门盲囊中寄生蠕虫的种类和感染情况。共发现10种寄生虫, 包括鳃上3种单殖吸虫: 林氏异钩铗虫(Heteromazocraes lingmueni)、细长嗜鳀虫(Helciferus tenuis)和长江中华钩铗虫(Sinomazocraes changjiangensis); 胃部1种复殖吸虫: 鲚套茎吸虫(Elytrophallus coiliae); 肠道3种线虫: 简单异尖线虫(Anisakis simplex)、对盲囊线虫(Contracaecum sp.)和胃瘤线虫(Eustrongylides sp.), 以及肠和幽门盲囊的3种棘头虫: 陈氏刺棘虫(Acanthosentis cheni)、鲇异吻钩棘头虫(Arhythmacanthus parasiluri)、长江傲刺棘头虫(Brentisentis yangtzensis)。林氏异钩铗虫和陈氏刺棘虫在3种生态型的刀鲚中都有较高的感染率和平均丰度; 海水性寄生虫细长嗜鳀虫、鲚套茎吸虫和对盲囊线虫只感染洄游型刀鲚, 可作为区分洄游型刀鲚的寄生虫标志; 淡水性寄生虫长江中华钩铗虫、鲇异吻钩棘头虫和长江傲刺棘头虫只在淡水型刀鲚中发现, 可作为淡水型刀鲚的寄生虫标志。洄游型刀鲚的物种丰富度和Brillouin多样性最高, 分别在1.25和0.19以上, 淡水型刀鲚的较低, 分别为0.79~1.12和0.10~0.12, 陆封型刀鲚的最低, 分别在0.66和0.02以下, 这主要是由于淡水型和陆封型刀鲚中海水性寄生虫大部分丢失, 以及淡水性寄生虫感染率和平均丰度都较低造成的。盐度降低和中间宿主缺乏是导致淡水型和陆封型刀鲚中海水性寄生虫丢失的主要原因; 而淡水性寄生虫较低的感染水平可能是由于其对新宿主的适应时间较短; 地理隔离可能是陆封型刀鲚中寄生虫群落多样性最低的另一重要原因。

    Abstract:

    Three ecotypes of Coilia nasus were identified: the anadromous stock migrated between the Yangtze River and sea, the freshwater stock resided in the Yangtze River and its adjoining lakes, and the landlocked stock in lakes isolated to the Yangtze River. In order to find parasite indicator to separate the three stocks of C. nasus, species composition and diversity of helminth communities were investigated. A total of 10 species of helminths were found in 407 C. nasus from the 9 sampling localities: 3 of monogeneans, Heteromazocraes lingmueni, Helciferus tenuis and Sinomazocraes changjiangensis in the gills; 1 of digenean Elytrophallus coiliae in the stomach; 3 of nematodes, Anisakis simplex, Contracaecum sp. and Eustrongylides sp. in the intestine; 3 of acanthocephalans, Acanthosentis cheni, Arhythmacanthus parasiluri and Brentisentis yangtzensis in the intestine and the pyloric caeca. H. lingmueni and A. cheni with rather high prevalence and mean abundance were found in the 3 ecotypes of C. nasus. The marine helminths, such as H. tenuis, Contracaecum sp. , and E. coiliae were only found in the anadromous stock, which suggested that the 3 helminths can be used as biological tags for discrimination of the anadromous stock. The freshwater helminths, such as S. changjiangensis, A. parasiluri and B. yangtzensis, with low infection levels were only found in the freshwater stock, which suggested that the 3 parasites can be used as indicator for the freshwater stock. Mean species richness and the Brillouin diversity index were highest in helminth community in the anadromous stock, higher than 1.25 and 0.19, respectively. Species richness and diversity in the other two stocks were lower than 0.79 and 1.12, respectively. The low diversity in helminth communities of freshwater and landlocked stocks was due to the low infection levels of freshwater parasites and the loss of marine helminths, which was probably caused by the salinity decrease and the absence of the intermediate hosts of marine helminths in freshwater habitat. In addition, geographical isolation could also prevent exchanging of the anchovy and helminths and then lead to decrease of diversity in the landlocked stock.

    参考文献
    Bailey R E, Margolis L. 1987. Comparison of parasite fauna of juvenile sockeye salmon (Oncorhynchus nerka) from southern British Columbian and Washington State lakes. Canadian Journal of Zoology, 65(2): 420-431.
    Bailey R E, Margolis L, Workman G D. 1989. Survival of certain naturally acquired freshwater parasites of juvenile sockeye salmon, Oncorhynchus nerka (Walbaum), in hosts held in fresh and sea water, and implications for their use as population tags. Canadian Journal of Zoology, 67(7): 1757-1766.
    Bouillon D R, Dempson J B. 1989. Metazoan parasite infections in landlocked and anadromous Arctic charr (Salvelinus alpinus Linnaeus), and their use as indicators of movement to sea in young anadromous charr. Canadian Journal of Zoology, 67(10): 2478-2485.
    Bush A O, Lafferty K D, Lotz J M, et al. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83(3): 575-583.
    Esch G W, Kennedy C R, Bush A O, et al. 1988. Patterns in helminth communities in freshwater fish in Great Britain: alternative strategies for colonization. Parasitology, 96(3): 519-532.
    Frimeth J P. 1987. Potential use of certain parasites of brook charr (Salvelinus fontinalis) as biological indicators in the Tabusintac River, New Brunswick, Canada. Canadian Journal of Zoology, 65(8): 1989-1995.
    Hurlbert S H. 1978. The measurement of niche overlap and some relatives. Ecology, 59(1): 67-77.
    Jakob E, Hanel R, Klimpel S, et al. 2008. Salinity dependence of parasite infestation in the European eel Anguilla anguilla in northern Germany. Ices Journal of Marine Science, 66(2): 358-366.
    Karvonen A, Valtonen E T. 2009. Between-population similarity in intestinal parasite community structure of pike (Esox lucius)-effects of distance and historical connections. Journal of Parasitology, 95(3): 505-511.
    Kennedy C R, Bush A O. 1994. The relationship between pattern and scale in parasite communities: a stranger in a strange land. Parasitology, 109(2): 187-196.
    Kirk R S, Kennedy C R, Lewis J W. 2000. Effect of salinity on hatching, survival and infectivity of Anguillicola crassus (Nematoda: Dracunculoidea) larvae. Diseases of Aquatic Organisms, 40(3): 211-218.
    Larsen G, Hemmingsen W, MacKenzie K, et al. 1997. A population study of cod, Gadus morhua L. in northern Norway using otolith structure and parasite tags. Fisheries Research, 32(1): 13-20.
    Li W X, Song R, Wu S G, et al. 2011. Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae): Parasite indicators of fish migratory movements. Journal of Parasitology, 97(2): 192-196.
    Li W X, Zou H, Wu S G, et al. 2012. Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China. Journal of Parasitology, 98(3): 449-452.
    MacKenzie K. 1987. Parasites as indicators of host populations. International Journal for Parasitology, 17(2): 345-352.
    MacKenzie K, Campbell N, Mattiucci S, et al. 2008. Parasites as biological tags for stock identification of Atlantic horse mackerel Trachurus trachurus L. Fisheries Research, 89(2): 136-145.
    Marques J F, Santos M J, Costa J L, et al. 2005. Metazoan parasites as biological indicators of population structure of Halobatrachus didactylus on the Portuguese coast. Journal of Applied Ichthyology, 21(3): 220-224.
    Mller H. 1978. The effects of salinity and temperature on the development and survival of fish parasites. Journal of Fish Biology, 12(4): 311-323.
    Oliva M E, Fernández I, Oyarzún C, et al. 2008. Metazoan parasites of the stomach of Dissostichus eleginoides Smitt 1898 (Pisces: Notothenidae) from southern Chile: A tool for stock discrimination? Fisheries Research, 91(2): 119-122.
    Soleng A, Bakke T A. 1997. Salinity tolerance of Gyrodactylus salaris (Platyhelminthes, Monogenea): Laboratory studies. Canadian Journal of Fisheries and Aquatic Sciences, 54(8): 1837-1845.
    Timi J T, Lanfranchi A L. 2009. The metazoan parasite communities of the Argentinean sandperch Pseudopercis semifasciata (Pisces: Perciformes) and their use to elucidate the stock structure of the host. Parasitology, 136(10): 1209-1219.
    Vignon M, Sasal P, Galzin R. 2009. Host introduction and parasites: a case study on the parasite community of the peacock grouper Cephalopholis argus (Serranidae) in the Hawaiian Islands. Parasitology Research, 104(4): 775-782.
    Williams H E, MacKenzie K, McCarthy A M. 1992. Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries, 2(2): 144-176.
    Zhang J Y, Liu L, Fang J P, et al. 2003. Monogenea from the middle Yangtze Valley: Sinomazocraes changjiangensis n. g. , n. sp (Family Mazocraeidae Price, 1936) on a clupeiform fish from Hubei Province, China. Systematic Parasitology, 54(2): 103-109.
    方建平. 1999. 黄颡异钩棘头虫在长江黄颡鱼中寄生的研究. 水利渔业, 19(6): 23-24.
    宋锐. 2011. 刀鲚寄生蠕虫的生态学研究. 武汉: 中国科学院水生生物研究所博士学位论文, 58-77.
    唐文乔, 胡雪莲, 杨金权. 2007. 从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性. 生物多样性, 15(3): 224-231.
    徐南, 孙超白, 童远瑞, 等. 1978. 长江流域刀鲚鱼生殖洄游的“生物指标”. 南京大学学报: 自然科学版, (3): 85-91.
    尹文英, 伍惠生. 1984. 中国淡水鱼类寄生虫论文集: 辽河鱼类寄生棘头虫. 北京: 农业出版社, 201-214.
    余仪, 伍惠生. 1989. 长江中游鱼类寄生棘头虫区系的研究. 水生生物学报, 13(1): 38-48.
    袁传宓, 林金榜, 秦安舲, 等. 1976. 关于我国鲚属鱼类分类的历史和现状——兼谈改造旧鱼类分类学的几点体会. 南京大学学报: 自然科学版, (2): 1-12.
    张世义. 2001. 中国动物志: 硬骨鱼纲 鲟形目 海鲢目 鲱形目. 北京: 科学出版社, 148-156.
    引证文献
    引证文献 [2]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李文祥,王桂堂.2014.洄游型、淡水型和陆封型刀鲚的寄生蠕虫群落结构.动物学杂志,49(2):233-243.

复制
文章指标
  • 点击次数:3140
  • 下载次数: 2354
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-07-22
  • 最后修改日期:2014-03-02
  • 录用日期:2013-12-05
  • 在线发布日期: 2014-03-28