达氏鲟精子的主要生物学特性
作者:
作者单位:

四川省农业科学院水产研究所,四川省农业科学院水产研究所,四川省农业科学院水产研究所

基金项目:

四川省财政基因工程青年(达氏鲟精子生理生态特性研究(2012QNJJ-016)


Biological characteristics of Acipenser dabryanus sperm
Author:
Affiliation:

Fisheries Institute,Sichuan Academy of Agricultural Sciences,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    达氏鲟(Acipenser dabryanus)属淡水定居性鲟鱼类,为我国特有种,主要分布在长江上游干流及金沙江下游。长期人为的过度捕捞及其生存环境的持续污染和水利工程的影响,使得达氏鲟自然种群资源遭到严重破坏,其配子质量的下降己经成为限制其规模化人工繁殖成功的关键因素之一,因此为解决达氏鲟规模化人工繁殖过程中存在的关键性技术点,作者从达氏鲟精液基本特征、精浆元素组成、不同水体及Na , K 对达氏鲟精子活力的影响、精子超微结构方面入手,对达氏鲟精子的生理生态特性进行了研究。结果显示,达氏鲟精子平均密度为1.52×109 个/ml; 精浆元素以Na 含量最高,其次是K ,之后为Ca2 、Mg2 、Cu2 、Zn2 ,其中Na 、 K 、Zn2 在达氏鲟精浆中的含量有极显著性差异(P<0.01),Ca2 、Cu2 、Mg2 差异不明显; 精子在江水中的活力最高; 在Na 浓度为20 mmol/L时,精子活力最高,精子快速运动时间(FT)和寿命(LT)分别为(66.7±7.1)s和(177.0±14.9)s,达氏鲟精子对K 浓度变化较为敏感,在K 浓度为0.05 mmol/L时,精子FT和LT最长,分别为(109.0±16.1)s和(189.3±12.4)s,超过0.05 mmol/L后精子FT和LT急速下降,当K 浓度达到0.5 mmol/L以上时,精子活力立即受到抑制;达氏鲟精子细胞核长(5.67±0.20)μm,鞭毛长(63.16±2.79)μm, 全长为(70.35±2.92)μm。

    Abstract:

    Acipenser dabryanus lives only in the Yangtze River and Chin-sha River, and its natural populations have been damaged severely by long-term over-exploitation and increasing pollution. In 1988, the fish was listed as class Ⅰ state protected animal. It is immediately required to develop conservation measures for its populations, which requires both management and understanding of its biogeographical and biological chracteristics. Beacuase of the decline of natural spawning colony resource, there is litter knowledge about the sperm physio-ecological characteristics. Healthy male A.dabryanus individuals which had been cultured by our institute were selected and their spermatozoa were collected. The density of spermatozoa was determined by counting using a haemocytometer after 1 000× dilution of samples with 0.65% NaCl extender, and the results from three replicates were averaged. Milt concentration was enumerated by using milt collected into standard centrifuge tubes and centrifuged at 4 000 r/min for 30 min. The sperm cell volume percentage in the total volume of semen was calculated from 5 replicates. Semen pH was measured with a precision test paper. Ionic composition of seminal plasma was measured by the atomic absorption spectrophotometry method with the use of a AA_220 spectrometer (Varian USA). The effects of different aqueous solution on the sperm motility were measured by using different sources of test water, and Na , K sensitivity of sperm motility was assessed by activating sperm with 20, 40, 60, 80, 100, 120 mmol/L NaCL and 0.01, 0.05, 0.10, 0.50, 1.00, 1.50 mmol/L KCl, respectively. For testing the motility of spermatozoa, 1 μl of milt was mixed directly with 30 μl of the experimental solution, placed on a glass slide and examined under 400× magnification. The ultrastructure of spermatozoa was observed by using SEM (scanning electron microscopy) and TEM (transmission electron microscopy). All statistical analyses were conducted with SPSS STATISTICS, Version 17.0. For multiple comparisons between groups with LSD method, statistical significance was declared at P < 0.05. Results were presented as mean ± standard deviation (SD). The results showed that the sperm density of A.dabryanus was 0.63 × 109 to 2.73 × 109/ml, with the average of 1.52 × 109/ml, the concentration of sperm was 3.18% to 12.98%, with the average of 7.67%, and the pH value was between 7.5 and 7.9 (Table 2). The ions composition in seminal plasma of A.dabryanus included Na , K , Ca2 , Mg2 , Cu2 , Zn2 , and Na was the main ion in seminal plasma, followed by K , Mg2 , Ca2 , Cu2 , Zn2 . There was significant difference in the concentration of Na , K , and Zn2 (P < 0.01), but no significant difference in Ca2 , Cu2 , Mg2 (Table 3). In A. dabryanus, the Na , K concentrations were lower than in teleostean fish (Table 4).The sperm had the highest motility in river water, and the fast movement time (FT) and lifetime (LT) were 142 s and 373 s, respectively (Fig. 1). The activity of A. dabryanus sperm in NaCl solution reached the highest when its concentration was 20 mmol/L, with the FT and LT being 66.7 ± 7.1 s and 177.0 ± 14.9 s, respectively (Fig. 2a). When the concentration of K was 0.05 mmol/L, the motility of sperm was the highest, while the FT and LT were the longest, which were 109.0 ± 16.1 s and 189.3 ± 12.4 s, respectively (Fig. 2b). The average length of the nucleus was 5.67 ± 0.20 μm (Table 5). Three intertwining endonuclear canals traversed the nucleus longitudinally from the acrosomal end to the basal nuclear fossa region. There were three mitochondria in the midpiece. The flagellum (63.16 ± 2.79 μm in length), originating from the centriolar apparatus, had a typical 9 2 eukaryotic flagellar organization (PlateⅠ). Some A. dabryanus sperm characteristics are reported here, but further investigations are needed in order to improve our knowledge of reproductive biology of this species and to establish gamete management methods.

    参考文献
    [1]Alavi S M H, Cosson J, Karami M,et al. 2004.Chemical composition and osmolality of seminal fluid of Acipenserpersicus;their physiological relationshipwith sperm motility.Aquaculture Research,35:1238-1243.
    [2]Alavi S M H, Cosson J. 2005.Sperm motility and fertilizing ability in the Persian sturgeon, Acipenser persicus. Aquaculture Research, 36:841–850.
    [3]Alavi S M H, Cosson J. 2006.Sperm motility in fishes: (II)Effects of ions and osmotic pressure. Cell biology international,30: 1–14.
    [4]Alavi S M H, Linhart O, Coward K, et al.2008.Fish spermatology: implication for aquaculture management.∥Alavi S M H, Cosson J, Coward K (eds) Fish spermatology. Alpha Science Ltd, Oxford, 397–460.
    [5]Alavi S M H, Gela D, Rodina M, et al.2011.Roles of osmolality, calcium-potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm.Comparative Biochemistry and Physiology, 160A:166–174.
    [6]Alavi S M H, Rodina M, Gela D, et al.2012a.Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Reviews in Fish Biology and Fisheries,22: 695–717.
    [7]Alavi S M H, Hatef A, Boryshpolets S, et al.2012b. Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Reviews in Fish Biology and Fisheries,22: 861–886.
    [8]Cherr G N,Clark W H.1984.An acrosme reaction in sperm from the white sturgeon,Acipenser transmontanu.Journal of Experimental Zoology, (232): 129 -139.
    [9]DiLauro M N, Kaboord W, Walsh R A.1998.Sperm-cell ultrastructure of North American sturgeons. I.The Atlantic sturgeon (Acipenser oxyrhynchus). Canadian Journal of Zoology,76: 1822–1836.
    [10]DiLauro M N,Kaboord W S,Walsh R A.1999.Sperm-cell ultrastructure of North American sturgeons.II. The shortnose sturgeon (Acipenser brevirostrum, Lesueur, 1818).Canadian Journal of Zoology, 77 :321–330.
    [11]DiLauro M N,Kaboord W S,Walsh R A.2000.Sperm-cell ultrastructure of North American sturgeon. III. The lake sturgeon (Acipenser fulvescens Rafinesque, 1817). Canadian Journal of Zoology,78: 438–447.
    [12]DiLauro M N,Walsh R A,Peiffer M.2001.Sperm-cell ultrastructure of north American sturgeons.IV.The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson,1905). Canadian Journal of Zoology,79: 802–808.
    [13]Debus L,Winkler M,Billard R..2002.Structure of micropyle surface on oocytes and caviar grains in sturgeons. International Review of Hydrobiology,87:585–603.
    [14]Ginzburg A S.1977.Fine structure of the spermatozoon and acrosome reaction in Acipenser stellatus.∥Beljaev DK (ed) Problemy Eksperimentalnoj Biologii. Nauka, Moscow, 246–256.
    [15]Gallis J L, Fedrigo E, Jatteau P, et al. 1991.Siberian sturgeon spermatozoa: effects of dilution, pH,osmoticpressure, sodiumand potassiumions onmotility//Williot P (ed) Acipenser.Cemagref, Bordeaux, 143–151.
    [16]Kynard B,Zhuang P,Zhang T,et al,2003,Ontogenetic behaviour and migration of Dabry `s sturgeon,Acipenser dabryanus from the Yangtze River,with notes on body colour and development rat.Environmental Biology of Fishes,66(1) : 27-36.
    [17]Linhart O, Cosson J, Mims SD, et al.2002.Effects of ions on the motility of fresh and demembranatedpaddlefish (Polyodon spathula) spermatozoa.Reproduction, 124:713–719.
    [18]Linhart O, Mims S D, Gomelsky B, et al.2003.Ionic composition and osmolality of paddlefish (Polyodon spathula,Acipenseriformes) seminal fluid.Aquaculture International,11: 357–368.
    [19]Piros B, Glogowski J, Kolman R, et al.2002.Biochemical characterization of Siberian sturgeon Acipenser baeri and starlet, Acipenser ruthenus, milt plasma and spermatozoa.Fish Physiology and Biochemistry, 26: 289–295.
    [20]Psenicka M, Alavi S M H, Rodina M, et al.2007.Morphology and ultrastructure of Siberian sturgeon, Acipenser baerii, spermatozoa using scanning and transmission electron microscopy. Biology of the Cell,99 :103–115.
    [21]Psenicka M, Alavi S M H, Rodina M, et al.2008.Morphology, chemical contents and physiology of chondrostean fish sperm: A comparative study between Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus).Journal of Applied Ichthyology,24: 371–377.
    [22]Psenicka M, Vancova M, Koubek P, et al.2009.Fine structure and morphology of sterlet (Acipenser ruthenus L. 1758) spermatozoa and acrosin localization.Animal Reproduction Science,111: 3–16.
    [23]Toth G P, Ciereszko A, Christ S A,et al.1997.Objective analysis of sperm motility in the lake sturgeon: activation and inhibition conditions. Aquaculture, 154: 337-348.
    [24]Wan Q H,Fang S G,Li Y N.2003.The loss of genetic diversity in Dabry's sturgeon,(Acipenser dabryanus Dumeril) as revealed by DNA fingerprinting.Aquatic Conservation:Marine and freshwater ecosystems,13(3) : 225 -231.
    [25]Zhuang P,Ke F, Wei QW, et al. 1996.Biology and life history of Dabry's sturgeon,Acipenser dabryanus in the Yangtze River. Environmental Biology of Fishes, 48: 257-264.
    [26]Zhang T, Zhuang P, Zhang L Z, et al.2003.Analysis on the trace element in seminal plasma of cultured Amur sturgeon and sterlet sturgeon. Fish Science China,10: 350–351.
    [27]Zhang H, Wei Q W, Du H, et al. 2011.Present status and risk for extinction of the Dabry's sturgeon ( Acipenser dabryanus) in the Yangtze River watershed: a concern for intensified rehabilitation needs. Journal of Applied Ichthyology,27 (2): 181-185.
    [28]Zhang S H, Luo H, Du H,et al.2013.Isolation and characterization of twenty-six microsatellite loci for the tetraploid fish Dabry’s sturgeon (Acipenser dabryanus).Conservation Genet Resour,5(2):409-412.
    [29]Zeng Q, H. Ye, A. Ludwig,et al.2013. Microsatellite development for the endangered Yangtze sturgeon (Acipenser dabryanus Duméril, 1869) using 454 sequencing.Journal of Applied Ichthyology,29(5):1-3.
    [30]杜军,赵刚,龚全,等.2009.达氏鲟亲鱼池塘人工培育试验.西南农业学报,22(3) : 824-827.
    [31]丁瑞华. 1994.四川鱼类志.四川科学技术出版社.
    [32]郑跃平.2007.中华鲟精子生理生态特性研究.华中农业大学.
    [33]何斌,陈先均,杜军,等. 2011.人工养殖条件下达氏鲟生长特性的研究.西南农业学报,24(1) : 335-339.
    [34]黄德祥. 1980.达氏鲟仔鱼消化系统的发育及摄食初期食性的初步观察.水产学报,4(3) : 285-293.
    [35]贾敬德,王志玲. 1981.两种鲟鱼的生态简介.淡水渔业, (6) : 12-13.
    [36]鲁大椿,傅朝君,刘宪亭,等.1989.我国主要淡水养殖鱼类精液的生物学特性.淡水渔业,2:34-37.
    [37]刘军. 2004.长江上游特有鱼类受威胁及优先保护顺序的定量分析.中国环境科学,4.
    [38]李萍,张耀光,殷江霞,等.2005.华鲮精子活力的观察.西南师范大学学报( 自然科学版),30(6) : 1100-1104.
    [39]厉萍.2007.中华鲟精子结构特征及其精液超低温冷冻保存技术研究.华中农业大学.
    [40]刘鹏,庄平,章龙珍,等. 2007.人工养殖西伯利亚鲟精子超低温冷冻保存研究.海洋渔业,29(2):20-127.
    [41]刘小华. 2007.达氏鲟的人工驯养试验.重庆水产, (4) : 34-38.
    [42]罗相忠,邹桂伟,潘光碧.2002.大口鲇精子生理特性的研究.淡水渔业,32(2) : 51-53.
    [43]倪勇,高宇鹏,饶军.2010.达氏鲟苗种培育关键技术的研究.四川省水力发电工程学会环保专委会: 23-26.
    [44]四川省长江水产资源调查组.1988.长江鲟鱼类生物学和人工繁殖研究.四川科学技术出版社.
    [45]四川省重庆长寿湖渔场水产研究所.1976.长江鲟人工繁殖初步试验报告.水产科技情报, (9) : 17 -21.
    [46]孙大江,韩志忠,曲秋芝,等. 2002.史氏鲟全人工繁殖研究——I.精子生物学特性观察.水产学杂志,2:32-34.
    [47]王丙乾,曲秋芝,邱岭泉,等. 2003.人工培育与野生施氏鲟精、卵生物学及胚胎发育的比较分析.大连水产学院学报,18(4):246-251.
    [48]汪登强. 2004.白鲟、达氏鲟线粒体 DNA 全序列及鲟形目分子进化研究.华中农业大学中文学位论文数据库.
    [49]王永明,史晋绒,蒲德永,等.2011.稀有鮈鲫精子主要生物学特性及活力的观察.淡水渔业,41(1): 68-72.
    [50]谢大敬,田应培,陈东禹.1981.池养四龄长江鲟的人工催情试验及其精子活力的初步观察.淡水渔业, (5) : 14-17.
    [51]张四明,晏勇,邓怀,等.1999.几种鲟鱼基因组大小、倍体特性及鲟形目细胞进化的探讨.动物学报,45: 194-199.
    [52]张四明,邓怀,汪登强,等. 1999.7种鲟形目鱼类亲缘关系的随机扩增多态性 DNA 研究.自然科学进展,9(8) : 818-823.
    [53]张四明,张亚平.郑向忠,等.1999.12种鲟形目鱼类mtDNA ND4L-ND4基因的序列变异及其分子系统学.中国科学c辑,29(6) : 608-614..
    [54]张四明,吴清江,张亚平.2000.中华鲟及相关种类的mtDNA控制区串联重复序列及其进化意义.中国生物化学与分子化学学报,16(4):458-461.
    [55]章龙珍,庄平,张涛,等. 2008.史氏鲟精子超微结构.海洋渔业,30(3):195-201.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈春娜,黄颖颖,陈先均,龙治海,杜军.2015.达氏鲟精子的主要生物学特性.动物学杂志,50(1):75-87.

复制
文章指标
  • 点击次数:2789
  • 下载次数: 4095
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-10-23
  • 最后修改日期:2015-01-04
  • 录用日期:2014-12-16
  • 在线发布日期: 2015-01-15