鄱阳湖四种水鸟的栖息地利用与水深和食物的关系
作者:
作者单位:

① 南昌大学生命科学研究院流域生态学研究所 南昌 330031,① 南昌大学生命科学研究院流域生态学研究所 南昌 330031,① 南昌大学生命科学研究院流域生态学研究所 南昌 330031;③ 复旦大学生物多样性科学研究所,生物多样性与生态工程教育部重点实验室 上海 200433,② 江西鄱阳湖国家级自然保护区管理局 南昌 330038,② 江西鄱阳湖国家级自然保护区管理局 南昌 330038,① 南昌大学生命科学研究院流域生态学研究所 南昌 330031;③ 复旦大学生物多样性科学研究所,生物多样性与生态工程教育部重点实验室 上海 200433

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目) 31260107 江西省 南昌市 南昌大学 生命科学研究院 流域生态学研究所


Relationship between Habitat Use of Four Waterbird Species and Water Depth and Food Resource in Poyang Lake
Author:
Affiliation:

① Institute of Watershed Ecology, Nanchang University, Nanchang 330031,① Institute of Watershed Ecology, Nanchang University, Nanchang 330031;,① Institute of Watershed Ecology, Nanchang University, Nanchang 330031; ③ Institute of Biodiversity Science, Ministry of Education Key Laboratory f or Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200433,② Jiangxi Poyang Lake National Nature Reserve, Nanchang 330038,② Jiangxi Poyang Lake National Nature Reserve, Nanchang 330038,Institute of Biodiversity Science, Ministry of Education Key Laboratory f or Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200433

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了了解水深和食物资源对水鸟栖息地利用的影响,2012 ~ 2013年越冬期,采用样方法,对鄱阳湖沙湖的白鹤 (Grus leucogeranus)、小天鹅 (Cygnus columbianus)、东方白鹳 (Ciconia boyciana) 和白琵鹭 (Platalea leucorodia) 4种水鸟的数量、觅食地和休息地的水深以及主要食物——沉水植物冬芽的密度和生物量进行了调查。每个样方为150 m? 150 m的栅格,全湖共设置152个样方。结果显示,10月份沉水植物冬芽的平均水深为 (124.2 ± 12.0) cm。4种水鸟觅食地的水深均显著高于其休息地的水深 (白鹤:Z = 11.96, 小天鹅:Z = 4.69, 东方白鹳:Z = 14.44, 白琵鹭:Z = 29.33, 所有P < 0.01);对于2种食冬芽的水鸟,白鹤觅食地的水深、冬芽生物量、取食深度以及休息地水深均显著低于小天鹅 (觅食地水深: Z = 8.56, 冬芽生物量: Z = 2.93, 取食深度: Z = 14.69, 休息地水深: Z = 4.34, 所有P < 0.05),但两者觅食地的冬芽密度差异不显著 (Z = 0.6, P = 0.55);对于2种食鱼性水鸟,东方白鹳觅食地水深、取食深度和休息地水深均显著大于白琵鹭 (觅食地水深: Z = 10.60; 取食深度: Z = 9.35; 休息地水深: Z = 8.47, 所有P < 0.01)。回归分析表明,白鹤、东方白鹳、白琵鹭的觅食个体数量均与水深呈二次项关系,个体数量最大的觅食地水深分别为23.9 cm,33.0 cm和22.6 cm;白鹤、小天鹅的觅食个体数量均与冬芽生物量呈线性关系。3种涉禽均只能分布在一定的水深范围内,且同种食性的水鸟利用不同的水深从而减少在空间生态位的重叠。

    Abstract:

    In order to understand the effects of water depth and food resources on the habitat use of waterbirds, we surveyed individual numbers, water depth of foraging and resting sites, food availability (density and biomass of winter buds of submerged macrophytes for bud-feeders) of four waterbird species (Grus leucogeranus, Cygnus columbianus, Ciconia boyciana and Platalea leucorodia) using plot methods in winter 2012 ~ 2013 in Shahu Lake, a sub-lake of Poyang Lake. A total of 152 plots were set in the lake with each plot being 150 m ? 150 m. The buds were collected in October before arrival of waterbirds and waterbirds were counted in January when large amounts of waterbirds concentrated in the lake. Distribution patterns of winter buds in different water depth in October were analyzed using Kolmogorov-Smirnov Z test. We compared water depth between foraging and resting sites of the 4 species using Mann-Whitney U test, respectively. We further compared water depth, density and biomass of winter buds in foraging sites and water depth in resting sites between Grus leucogeranus and Cygnus columbianus (both mainly forage on buds) using Mann-Whitney U test, respectively. We also compared water depth between two piscivorous waterbird species in foraging sites and resting sites, respectively. Regression analysis were used to assess the relationship between foraging bird numbers and water depth for the 4 species, as well as between foraging bird numbers and biomass of winter buds for 2 bud-feeding species. Results indicated that winter buds distributed in an average water depth of (124.2 ± 12.0) cm in October (Fig. 2). Water depth at foraging sites of all the four species were deeper than that at resting sites (Grus leucogeranus: Z = 11.96, Cygnus columbianus: Z = 4.69, Ciconia boyciana: Z = 14.44, Platalea leucorodia: Z = 29.33, P < 0.01 for all) (Table 1). Density of winter buds at foraging sites was not significantly different (Z = 0.6, P = 0.55). For the two bud-feeding waterbird species, Grus leucogeranus roosted in shallower water and foraged in shallower water with lower biomass of winter buds than that of Cygnus columbianus, and the former had shallower foraging depth that the latter (water depth at foraging sites: Z = 8.56; biomass of winter buds: Z = 2.93, foraging depth: Z = 14.69, water depth at resting sites: Z = 4.34, P < 0.05 for all). For the two piscivorous waterbird species, foraging depth, water depth at foraging sites and water depth at resting sites of Ciconia boyciana were deeper than that of Platalea leucorodia (water depth at foraging sites: Z = 10.60, foraging depth: Z = 9.35, water depth at resting sites: Z = 8.47, P < 0.01 for all). Regression analysis indicated significant quadratic relationships between the individual numbers of foraging Grus leucogeranus (R2 = 0.39, P < 0.05), Ciconia boyciana (R2 = 0.31, P < 0.05), Platalea leucorodia (R2 = 0.29, P < 0.05) and water depth at study site (Fig. 3). The water depth with the highest densities of the three species were 23.9, 33.0, and 22.6 cm, respectively. Individual number of foraging Grus leucogeranus (R2 = 0.43, P < 0.01) and Cygnus columbianus (R2 = 0.54, P < 0.05) increased with the increase of biomass of winter buds. Three wader species distributed only within a certain range of water depth and species with same diets distributed at different water depth to reduce overlap of spatial niche.

    参考文献
    Baker M C. 1979. Morphological correlates of habitat selection in a community of shorebirds (Charadriiformes). Oikos, 33: 121 – 126.
    Burnham J W. 2007. Environmental drivers of Siberian crane (Grus leucogeranus) habitat selection and wetland management and conservation in China. Madison: University of Wisconsin—Madison.
    Froneman A, Mangnall M J, Little R M, et al. Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity and Conservation, 10: 251 – 270.
    Gawlik D E. 2002. The effects of prey availability on the numerical response of wading birds. Ecological Monography, 72: 329 – 346.
    Hutto R L. 1985. Habitat selection by nonbreeding, migratory land birds // Cody M L. Habitat selection in birds. London: Academic Press, 455 – 476.
    Isola C R, Colwell M A, Taft O W, et al. 2000. Interspecific differences in habitat use of shorebirds and waterfowl foraging in managed wetlands of California's San Joaquin Valley. Waterbirds, 23(2): 196 – 203.
    Ma Z J, Cai Y T, Li B, et al. 2010. Managing wetland habitats for waterbirds: An international perspective. Wetlands, 30: 15 – 27.
    Nolet B A, Langevoord O, Bevan R M, et al. 2001. Spatial variation in tuber depletion by swans explained by differences in net intake rates. Ecology, 82(6): 1655 – 1667.
    Nolet B A, Fuld V N, Van Rijswijk M E C. 2006. Foraging costs and accessibility as determinants of giving-up densities in a swan-pondweed system. Oikos, 112: 353 – 362.
    Poysa H. 1983. Resource utilization pattern and guild structure in a waterfowl community. Oikos, 40: 295 – 307.
    Safran R J, Isola C R, Colwell M A, et al. 1997. Benthic invertebrates at foraging locations of nine waterbird species in managed wetlands of the northern San Joaquin Valley, California. Wetlands, 17(3): 407 – 415.
    Shankman D, Liang Q. 2003. Landscape Changes and Increasing Flood Frequency in China's Poyang Lake Region. The Professional Geographer, 55(4): 434 – 445.
    Wu G F, de Leeuw J, Skidmore A K, et al. 2009. Will the Three Gorges Dam affect the underwater light climate of Vallisneria spiralis L. and food habitat of Siberian crane in Poyang Lake? Hydrobiologia, 623(1): 213 – 222.
    Zhu J, Jing K, Gan X J, et al. 2007. Food supply in intertidal area for shorebirds during stopover at Chongming Dongtan, China. Acta Ecologica Sinica, 27(6): 2149 – 2159.
    陈锦云, 周立志. 2011. 安徽沿江浅水湖泊越冬水鸟群落的集团结构. 生态学报, 31(18): 5323 – 5331.
    楚国忠, 郑光美. 1993. 鸟类栖息地研究的取样调查方法. 动物学杂志, 28(6): 47 – 52.
    何春光, 宋榆钧, 郎惠卿, 等. 2002. 白鹤迁徙动态及其停歇地环境条件研究. 生物多样性, 10(3): 286 – 290.
    胡振鹏. 2012. 白鹤在鄱阳湖越冬生境特性及其对湖水位变化的响应. 江西科学, 30(1): 30 – 35.
    吉姆?哈里斯. 2011. 鄱阳湖生态监测项目回顾 // 李凤山, 刘观华, 吴建东. 鄱阳湖湿地和水鸟的生态研究.
    纪伟涛, 曾南京, 刘志刚, 等. 2002. 自然地理 // 吴英豪, 纪伟涛. 江西鄱阳湖国家级自然保护区研究. 北京: 中国林业出版社, 1 – 6.
    刘观华, 曾南京, 文思标. 2011. 鄱阳湖与鄱阳湖国家级自然保护区基本情况 // 李凤山, 刘观华, 吴建东. 鄱阳湖湿地和水鸟的生态研究. 北京: 科学普及出版社, 3 – 9.
    马克?巴特, 陈立伟, 曹垒, 等. 2004. 长江中下游水鸟调查报告 (2004年1 – 2月). 北京: 中国林业出版社.
    马克?巴特, 雷刚, 曹垒. 2005. 长江中下游水鸟调查报告 (2005年2月). 北京: 中国林业出版社.
    万文豪, 纪伟涛, 刘彬生, 等. 2002. 苦草的生长研究 // 吴英豪, 纪伟涛. 江西鄱阳湖国家级自然保护区研究. 北京: 中国林业出版社, 62 – 84.
    王禹石, 阮禄章, 黄鹏, 等. 2010. 鄱阳湖越冬季节东方白鹳栖息地选择及保护现状研究. 安徽农业科学, 38(14): 7376 – 7378.
    吴建东, 李凤山. 2013. 鄱阳湖沙湖越冬白鹤的数量分布及其与食物和水深的关系. 湿地科学, 11(3): 305 – 312.
    严丽, 丁铁明. 1988. 江西鄱阳湖区白鹤越冬调查. 动物学杂志, 23(4): 34 – 38.
    曾南京, 金杰峰, 刘凯, 等. 2011b. 小天鹅、鸿雁、白额雁的监测 // 李凤山, 刘观华, 吴建东, 等. 鄱阳湖湿地和水鸟的生态研究. 北京: 科学普及出版社, 89 – 105.
    曾南京, 刘观华, 吴建东, 等. 2011a. 越冬水鸟监测 // 李凤山, 刘观华, 吴建东, 等. 鄱阳湖湿地和水鸟的生态研究. 北京: 科学普及出版社, 43 – 54.
    张本. 1988. 鄱阳湖研究. 上海: 上海科学技术出版社, 13 – 15.
    赵正阶. 2001. 中国鸟类志. 长春: 吉林科学技术出版社, 151 – 232, 410 – 421.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张笑辰,金斌松,陈家宽,吴建东,刘观华,马志军.2014.鄱阳湖四种水鸟的栖息地利用与水深和食物的关系.动物学杂志,49(5):657-665.

复制
文章指标
  • 点击次数:2728
  • 下载次数: 3418
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-01-10
  • 最后修改日期:2014-08-29
  • 录用日期:2014-08-29
  • 在线发布日期: 2014-09-17