白头鹎的的体温调节与蒸发失水
作者:
作者单位:

温州大学生命与环境科学学院,义乌市大成中学,温州大学生命与环境科学学院,温州大学生命与环境科学学院,温州大学生命与环境科学学院,温州大学生命与环境科学学院

基金项目:

国家自然科学基金资助项目(No. 31070366);浙江省自然科学基金(LY13C030005);浙江省“新苗人才计划”项目部分资助


Thermoregulation and Evaporative Water Loss in Chinese Bulbuls Pycnonotus sinensis
Author:
Affiliation:

① School of Life and Environmental Sciences,Wenzhou University,① School of Life and Environmental Sciences,Wenzhou University,① School of Life and Environmental Sciences,Wenzhou University,① School of Life and Environmental Sciences,Wenzhou University,① School of Life and Environmental Sciences,Wenzhou University,① School of Life and Environmental Sciences,Wenzhou University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用开放式呼吸测定仪和数字式温度测量仪,在环境温度为5.0~35.0℃范围内,测定白头鹎的体温、代谢产热和蒸发失水(EWL),并计算其热传导等生理生态特征。结果表明:白头鹎的热热中性区为25.0~32.0℃;基础代谢率(BMR)为(3.67±0.03)ml O2 g-1 h-1,是体重预期值的64%。平均最小热传导为(0.15±0.00)ml O2 g-1 h-1-1,是体重预期值的124%。蒸发失水与产热的比率(EWL/RMR)在5.0~35.0℃时随着环境温度的升高而升高,在35℃时达到峰值,为(1.71±0.07)mg H2O/ml O2。代谢水和蒸发失水的比率(MWP/EWL)随环境温度上升而下降,在16.4℃时,MWP/EWL为1。这些结果表明了白头鹎具有较低的基础代谢率和高的热传导,蒸发失水在体温调节中占有重要的地位。

    Abstract:

    Basal metabolic rate (BMR, seen as the body’s physiological maintenance cost) is thought to be a major hub of physiological mechanisms connecting life history characteristics, and evaporative water loss (EWL) is a physiological indicator used to measure water relations in inter– or intraspecific studies of birds. In this study, we examined body temperature (Tb), metabolic rate (MR) and EWL at ambient temperatures (Ta) between 5 and 35 ?C in summer–acclimatized Chinese bulbul (Pycnonotus sinensis) that were captured in Wenzhou . Experiments were carried out in July 2011. Body mass was determined immediately upon capture with a balance, and the mean body mass was 29.6 ± 1.7 g. Animals were transported to the laboratory and caged for 1 week (50 cm × 30 cm × 20 cm) outdoors under natural photoperiod and temperature. Birds’ metabolic rates were measured with an open–circuit respirometry system. A ‘U’ tube (containing silica gel) was connected in series behind the respiratory chamber and weighed (±0.1mg). The amount of evaporative water lost by each bird was absorbed by the silica gel and could therefore be measured by reweighing the U tube at the end of the measurement. We found that mean Tb was 40.7±0.1?C and average minimum thermal conductance (C) was 0.15 ml O2 g-1 h-1 ?C-1. The thermal neutral zone (TNZ) was 25.0~32.0?C and BMR was 3.67±0.03 ml O2 g-1 h-1. Below the lower critical temperature of the TNZ, MR increased linearly with decreasing Ta according to the relationship: MR (ml O2 g-1 h-1) = 5.296–0.068 Ta. EWL increased with Ta according to the relationship: Log EWL (mg H2O h-1) =1.563 0.021 Ta which exceeded metabolic water production at Ta > 16.4?C. Chinese bulbuls had lower levels of BMR and high levels of thermal conductance, compared with the predicted values based on their body masses, and it also had wide TNZ. It suggests that EWL plays an important role in thermoregulation

    参考文献
    Aschoff J. 1981. Thermal conductance in mammals and birds: Its dependence on body size and circadian phase. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 69 (4): 611 – 619.
    Aschoff J, Pohl H. 1970. Der ruheumsatz von v?geln als funktion der tazeszeitund der k?rpergr?sse. Journal für Ornithologie, 111 (1): 38 – 47.
    Bosque C, Pacheco M A, Siegel R B. 1999. Maintenance energy costs of two partially folivorous tropical passerines. The Auk, 116 (1): 246 – 252.
    Burton C T, Weathers W W. 2003. Energetics and thermoregulation of the Gouldian Finch (Erythrura gouldiae). Emu, 103 (1): 1 – 10.
    Chamane S, Downs C T. 2009. Seasonal effects on metabolism and thermoregulation abilities of the Red–winged Starling (Onychognathusmorio). Journal of Thermal Biology, 34 (7): 337 – 341.
    Clarke A, Rothery P. 2008. Scaling of body temperature in mammals and birds. Functional Ecology, 22 (1): 58 – 67.
    Clement M E, Mu?oz–Garcia A, Williams J B. 2012. Cutaneous water loss and covalently bound lipids of the stratum corneum in nestling house sparrows (Passer domesticus L.) from desert and mesic habitats. Journal of Experimental Biology, 215 (7): 1170 – 1177.
    Cooper S J. 2007. Daily and seasonal variation in body mass and visible fat in mountain chickadees and juniper titmice. The Wilson Journal of Ornithology, 119 (4) 720 – 724.
    Dawson W R, William R. 1982. Evaporative losses of water by birds. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 71 (4): 495 – 509.
    Gillooly J F, Brown J H, West G. B, et al. 2001. Effects of size and temperature on metabolic rate. Science, 293 (5538): 2248 – 2251.
    Kendeigh S C, Blem C R. 1977. Metabolic adaptation to local climate in birds. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 48 (1): 175-187.
    Liu J S, Wang D H, Sun R Y. 2005. Climatic adaptations in metabolism of four species of small birds in China. Acta Zoologica Sinica, 51 (1): 24 – 30.
    Lovegrove B G. 2003. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. Journal of Comparative Physiology: B, 173 (2): 87 – 112.
    MacMillen R E, Baudinette R V. 1993. Water economy of granivorous birds: Australian parrots. Functional Ecology, 7 (6): 704 – 712.
    MacMillen R E, Hinds D S. 1983. Water regulatory efficiency in heteromyid rodents: a model and its application. Ecology, 64 (1): 152 – 164.
    MacMillen R E, Hinds D S. 1998. Water economy of granivorous birds: California house finches. The Condor, 100 (3): 493 – 503.
    Marilyn R B, Dale W H. 2001. The effects of thyroxine on metabolism and water balance in a desert-dwelling rodent, Merriam's kangaroo rat (Dipodomys merriami). Journal of Comparative Physiology: B, 172 (1):17 – 25.
    Marschall U, Prinzinger R. 1991. Verleichende ?kophysiologie von fünf prachtfinkenarten (Estrildidae). Journal für Ornithologie, 132 (3): 319 – 323.
    McKechnie A E. 2008. Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. Journal of Comparative Physiology: B, 178 (3): 235 – 247.
    McKechnie A E, Chetty K, Lovegrove B G. 2007. Phenotypic flexibility in the basal metabolic rate of laughing doves: responses to short–term thermal acclimation. Journal of Experimental Biology, 210 (1): 97 – 106.
    McKechnie A E, Lovegrove B G. 2002. Avian facultative hypothermic responses: a review. The Condor, 104 (4): 705 – 724.
    McKechnie A E, Swanson D L. 2010. Sources and significance of variation in basal, summit and maximal metabolic rates in birds. Current Zoology, 56 (6): 741 – 758.
    McKechnie A E, Wolf B O. 2004. Partitioning of evaporative water loss in white- winged doves: plasticity in response to short- term thermal acclimation. Journal of Experimental Biology, 207 (2):203 – 210.
    McNab B K. 1966. An analysis of the body temperatures of birds. The Condor, 68 (1): 47 – 55.
    McNab B K. 2005. Food habits and the evolution of energetics in birds of paradise (Paradisaeidae). Journal of Comparative Physiology: B, 175 (2): 117 – 132.
    McNab B K. 2009. Ecological factors affect the level and scaling of avian BMR. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 152 (1): 22 – 45.
    Mu?oz–Garcia A, Williams J B. 2007. Cutaneous water loss and lipids of the stratum corneum in dusky antbirds, a lowland tropical bird. The Condor, 109(1): 59–66.
    Nzama S N, Downs C T, Brown M. 2010. Seasonal variation in the metabolism–temperature relation of house sparrow (Passer domesticus) in KwaZulu–Natal, South Africa. Journal of Thermal Biology, 35 (2): 100 – 104.
    Prinzinger R, G?ppel R, Lorenz A, Kulzer E. 1981. Body temperature and metabolism in the red-backed mousebird (Colius castanotus) during fasting and torpor. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 69 (4): 689 – 692.
    Prinzinger R, Prebmar A, Schleucher E. 1991. Body temperature in Birds. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 99 (4): 499 – 506.
    Schleucher E. 1999. Energy metabolism in an obligate frugivore, the superb fruit-dove (Ptilinopus superbus). Australian Journal of Zoology, 47 (2): 169 – 179.
    Schleucher E. 2002. Metabolism, body temperature and thermal conductance of fruit–doves (Aves: Columbidae, Treroninae). Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 131 (2): 417 – 428.
    Schmidt – Nielsen K. 1997. Animal Physiology: Adaptation and Environment. Cambridge: Cambridge University Press, 169 – 214.
    Stephens C M, Siegel R B, Weathers W W. 2000. Thermal conductance and basal metabolism of the orange–cheeked waxbill (Estrilda melpoda). Ostrich, 72 (1–2): 121 –1 23.
    Swanson D L. 2010. Seasonal metabolic variation in birds: functional and mechnistic correlates. // Thompson C F. Current Ornithology ,17. Berlin: Springer, 75 – 129.
    Swanson D L. 2001. Are summit metabolism and thermogenic endurance correlated in winter– acclimatized passerine birds? Journal of Comparative Physiology: B, 171 (6): 475–481.
    Tieleman B I, Williams J B. 1999. The role of hyperthermia in the water economy of desert birds. Physiological and Biochemical Zoology, 72 (1): 87 – 100.
    Tieleman B I, Williams J B, Buschur M E. 2002. Physiological adjustments to arid and mesic environments in larks (Alaudidae). Physiological and Biochemical Zoology, 75 (3): 305 – 313.
    Tieleman B I, Williams J B, Bloomer P. 2003a. Adaptation of metabolism and evaporative water loss along an aridity gradient. Proceeding of the Royal Society B, 270 (1511): 207 – 214.
    Tieleman B I, Williams J B, Buschur M E, et al. 2003b. Phenotypic variation of larks along an aridity gradient: are desert birds more flexible? Ecology, 84 (7): 1800 – 1815.
    Tirado C, Cortes A, Bozinovic F. 2007. Metabolic rate, thermoregulation and water balance in Lagidium viscacia inhabiting the arid Andean plateau. Journal of Thermal Bioligy, 32 (4): 220 – 226.
    Warnecke L, Cooper C E, Geiser F, et al. 2010. Environmental physiology of a small marsupial inhabiting arid floodplains. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 157 (1): 73 – 78.
    Weathers W W. 1979. Climatic adaptation in avian standard metabolic rate. Oecologia, 42 (1): 81 – 89.
    Weathers W W. 1997. Energetics and thermoregulation by small passerines of the humid, lowland tropics. The Auk, 114 (3): 341 – 353.
    Wiersma P, Mu?oz–Garcia A, Walker A, et al. 2007. Tropical birds have a slow pace of life. Proceedings of the National Academy of Sicences of the Unite States of America, 104 (22): 9340 – 9345.
    Williams J B. 1996. A phylogenetic perspective of evaporative water loss in birds. The Auk, 113 (2): 457 – 472.
    Williams J B. 1999. Heat production and evaporative water loss of Dune larks from the Namib desert. The Condor, 101 (2): 432 – 438.
    Williams J B, Tieleman B I. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. Journal of Experimental Biology, 203 (20): 3153 – 3159.
    Williams J B, Mu?oz-Garcia A, Champagne A. 2012. Climate change and cutaneous water loss of birds. Journal of Experimental Biology, 215 (7):1053 – 1060.
    Wu Y N, Lin L, Xiao Y C, et al. 2014. Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis. Zoological Research, 35 (1): 33 – 41.
    Xia S S, Yu A W, Zhao L D, et al. 2013. Metabolic thermogenesis and evaporative water loss in the Hwamei Garrulax canorus. Journal of Thermal Biology, 38 (8): 576 – 581.
    Zhang Y P, Liu J S, Hu X J, et al. 2006. Metabolism and thermoregulation in two species of passerines from south–eastern China in summer. Acta Zoologica Sinica, 52 (4): 641 – 647.
    Zheng G M, Zhang C Z. 2002. Birds in China. Beijing: China Forestry Publishing House.
    Zheng W H, Li M, Liu J S, et al. 2008a. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 151 (4): 519 – 525.
    Zheng W H, Liu J S, Jiang X H, et al. 2008b. Seasonal variation on metabolism and thermoregulation in Chinese bulbul. Journal of Thermal Biology, 33 (6): 315 – 319.
    Zheng W H, Lin L, Liu J S, et al. 2013. Physiological and biochemical thermoregulatory responses of Chinese bulbuls Pycnonotus sinensis to warm temperature: Phenotypic flexibility in a small passerine. Journal of Thermal Biology, 38 (5): 483 – 490.
    Zhu W L, Jia T, Lian X, et al. 2008. Evaporative water loss and energy metabolic in two small mammals, voles (Eothenomys miletus) and mice (Apodemus chevrieri), in Hengduan mountains region. Journal of Thermal Biology, 33 (6): 324 – 331.
    Zhu W L, Zhang L, Wang Z K. 2010. Thermogenic characteristics and evaporative water loss in the tree shrew (Tupaia belangeri ). Journal of Thermal Biology, 35 (6): 290 – 294.
    林 琳,曹梦婷,胡益林,等.2014.环境温度对白头鹎代谢产热和蒸发失水的影响.生态学报,印刷中.
    倪小英,林 琳,周菲菲,等.2011.光周期对白头鹎(Pycnonotus sinensis)体重、器官重量和能量代谢的影响.生态学报,31(6):1703 – 1713.
    彭丽洁,唐小丽,柳劲松,等.2010.甲状腺激素对白头鹎基础产热的影响.生态学报, 30(6):1500 – 1507.
    王德华,孙儒泳,王祖望.1993.高原鼠兔蒸发失水的地位及热能调节.兽类学报,13(2):104 – 113.
    王德华,王祖望.2000.高寒地区根田鼠的体温调节与蒸发失水.兽类学报, 20(1):37 – 47.
    张国凯,方媛媛,姜雪华,等.2008.白头鹎的代谢率与器官重量在季节驯化中的可塑性变化.动物学杂志,43(4):13 – 19.
    郑蔚虹,方媛媛,姜雪华,等.2010.白头鹎肝脏和肌肉冬夏两季的代谢产热特征比较.动物学研究,31(3):319 – 327.
    周围,王玉萍,陈德汉,等.2010.白头鹎体温、体重及能量代谢的昼夜节律.生态学杂志,29(12):2395 – 2400.
    朱万龙,杨永宏,贾婷,等.2008.横断山两种小型哺乳动物的蒸发失水与体温调节.兽类学报,28(1):65 – 74.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏素素,俞呈呈,沈丽玉,章忆颖,郑蔚虹,柳劲松.2014.白头鹎的的体温调节与蒸发失水.动物学杂志,49(6):830-840.

复制
文章指标
  • 点击次数:2633
  • 下载次数: 2561
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-01-11
  • 最后修改日期:2014-08-26
  • 录用日期:2014-08-21
  • 在线发布日期: 2014-11-06