青鱼逃逸过程中的疾冲-滑行游泳行为
作者单位:

①三峡大学,①三峡大学,①三峡大学,①三峡大学,①三峡大学,①三峡大学,①三峡大学,①三峡大学

基金项目:

水利部公益性行业科研专项(No.201201030),水利部水工程生态效应与生态修复重点实验室开放基金项目,三峡库区生态环境教育部工程研究中心开放基金项目(No.KF2013-03)


The Burst-coast Behavior in Escape Response of Black Carp
Author:
Affiliation:

San Xia Da Xue,San Xia Da Xue,San Xia Da Xue,San Xia Da Xue,San Xia Da Xue,San Xia Da Xue,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本实验以青鱼(Mylopharyngodon piceus)为研究对象,定性分析了通过电击实验鱼受到惊吓而产生的快速逃逸游泳行为,并定量分析了其疾冲游泳过程中加速度、最大疾冲游泳加速度和减速过程中的加速度。在自然光照下,保持实验水温为(20.0±1.0)℃。青鱼的3种不同体长规格分别为稚鱼(9.21±1.89)cm(n=30)、幼鱼(17.83±2.67)cm(n=30)和亚成体(61.45±0.80)cm(n=10)。实验过程中发现实验鱼逃逸游泳行为主要以疾冲-滑行的游泳方式进行,即实验鱼到达最大疾冲速度后身体保持固定直线不变的形式减速。3种实验体长的青鱼,其对应的最大绝对逃逸速度分别为(1.261±0.279)m/s、(1.542±0.280)m/s和(2.292±0.567)m/s,到达最大逃逸速度的时间分别为(0.249±0.089)s、(0.293±0.067)s和(0.216±0.024) s,对应的最大相对逃逸速度(实验鱼每秒内游泳距离相对于体长的倍数)分别为(13.694±3.032)BL/s、(8.648±1.571)BL/s和(3.729±0.923)BL/s。单因素方差分析表明,实验鱼的绝对疾冲速度随体长的增加而增加,亚成体的最大疾冲游泳速度显著大于稚鱼(P<0.05);相对疾冲速度随体长的增加而减小,3种实验鱼之间的最大相对疾冲游泳速度均存在显著性差异(P<0.05);亚成体的绝对滑行游泳加速度的绝对值显著高于幼鱼和稚鱼(P<0.05)。3种实验鱼之间的相对滑行加速度不存在显著性差异(P>0.05)。

    Abstract:

    This experiment studied the escapement behavior of black carp (Mylopharyngodon piceus) . The rapid escapement behavior of tested fish triggered by electric shock was analyzed qualitatively, and the acceleration, maximum acceleration and deceleration during sprinting were analyzed quantitatively. The experiment was conducted in natural light condition with water temperature of 20 ± 1 ℃. The tested fish were categorized to 3 groups according to body length: Young fish (9.21 ± 1.89) cm (n=30), Juvenile fish ( 17.83 ± 2.67 ) cm (n=30), Sub-adult fish ( 61.45 ± 0.80 ) cm (n=10). The results showed that the maximum absolute escape speeds of tested fish corresponding to 3 different size groups were 1.261 ± 0.279 m/s, 1.542 ± 0.280 m/s and 2.292 ± 0.567 m/s, the time to reach the highest sprinting speed were (0.249±0.089) s, (0.293±0.067) s and (0.216±0.024) s, the maximum relative escape speeds(Multiple to length to fish swimming distance in per second) were (13.694 ± 3.032) BL/s, (8.648 ± 1.571) BL/s and (3.729 ± 0.923) BL/s. Fish slowed down to coast with the body kept steady (no tail-beat) when test fish reached the best sprinting speed. One-way ANOVA. difference analysis showed that the absolute sprinting speed of tested fish increased as body length increased and Sub-adult fish (61.45±0.80 cm) had a faster absolute sprinting speed than Young fish (9.21±1.89 cm) (P < 0.05) (Fig.2); while the relative sprinting speed of tested fish decreased as the body length increased, presenting significant difference in the maximum relative sprinting speed among the 3 tested groups (P < 0.05)(Fig.4); the value of absolute coast deceleration of the Sub-adult fish significantly higher than that of the Young fish and Juvenile fish (17.83±2.67 cm) (P < 0.05) (Fig.5); there is no significant difference in the relative coast acceleration among the 3 tested groups (P>0.05) (Fig.5).

    参考文献
    Dutil J D,Sylyestre E L,Gamache L,et al. 2007. Burst and coast use,swimming performance and metabolism of Atlantic cod Gadus morhua in sub-lethal hypoxic conditions. The Journal of Fish Biology,71: 363-375.
    Fisher R, Wilson S K. 2004. Maximum sustainable swimming speeds of late-stage larvae of nine species of reef fishes. The Journal of Experimental Marine Biology and Ecology, 312 : 171-186.
    He P G. 2003. Swimming behaviour of winter flounder (Pleuronectes americanus) on natural fishing grounds as observed by an underwater video camera.Fish Research,60: 507-514.
    Kazutaka Y, Steve E, Takafumi A. 2007. Influence of water temperature and fish length on the maximum swimming speed of sand flathead, Platycephalus bassensis: Implications for trawl selectivity. Fisheries Research, 84: 180 -188.
    Kieffer J D. 2010. Perspective-Exercise in fish: 50 years and going strong. Comparative Biochemistry and Physiology, 156: 163-168.
    Marcia S M, Mark B B, Todd W. 2009. Predicting barrier passage and habit suitability for migratory fish species. Ecological Modelling, 220: 2782-2791.
    Muller U K, Stamhuis E J, Videler J J. 2000. Hydrodynamics of unsteady fish swimming and the effects of body size: comparing the flow fields of fish larvae and adults. The Journal of Experimental Biology, 203: 193-206.
    Martinez M, Bedard M, Dutil J D, et al. 2004. Does condition of Atlantic cod(Gadus morhua)have a greater impact upon swimming performance at Ucrit or sprint speeds? The Journal of Experimental Biology, 207: 2979-2990.
    Plaut I. 2001. Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology, 131: 41-50.
    Shinya M, Naoyuki M, Daisei A, et al. 2007. Effects of diets supplemented with iron citrate on some physiological parameters and on burst swimming velocity in smoltifying hatchery-reared masu salmon ( Oncorhynchus masou). Aquaculture, 273: 284-297.
    Videler J J, Weihs D. 1982. Energetic advantages of burst-and-coast swimming of fish at high speeds. The Journal of Experimental Biology, 97: 169-178.
    Videler J J. 1981. Swimming movements, body structure and propulsion in cod (Gadus morhua). Symposium of the Zoological Society of London, 48: 1-27.
    Wilson R S. 2005. Temperature influences the coercive mating and swimming performance of male eastern mosquitofish. Animal Behaviour,70 : 1387-1394.
    Wu G H, Yang Y, Zeng L J. 2007. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi). The Journal of Experimental Biology, 210: 2181-2191.
    Webb P W. 1975. Hydrodynamics and energetics of fish propulsion. Bulletin of the Fisheries Research Board Canada, 190: 1-156.
    Winger P D, He P, Walsh S J. 2000. Factors affecting the swimming endurance and catchability of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 57: 1200-1207.
    Yanase K,Eayrs S,Arimoto T. 2007. Influence of water temperature and fish length on the maximum swimming speed of sand flathead,Platycephalus bassensis : implications for trawl selectivity.Fisheries Research, 84( 2) : 180-188.
    乔云贵, 黄洪亮, 黄妙芬, 等. 2012. 不同淡水鱼类游泳速度的初步研究. 湖南农业科学, 15: 116-119.
    石小涛, 陈求稳, 黄应平, 等. 2011. 鱼类通过鱼道内水流速度障碍能力的评估方法. 生态学报, 31(22): 6967-6972.
    石小涛,王博, 王雪, 等. 2013. 胭脂鱼早期发育过程中集群行为的形成.水产学报, 37(5):705-709.
    史航,陈勇等. 2010. 许氏平鲉、大泷六线鱼临界游速与爆发游速及其生理指标的研究.大连海洋大学学报,25(5):407-412.
    石小涛, 陈求稳, 刘德富, 等. 2012. 胭脂鱼幼鱼的临界游泳速度. 水生生物学报, 36(1): 133-136.
    王 芳, 曹振东, 付世建, 等. 2010. 中华倒刺鲃幼鱼的快速启动与逃逸行为. 生态学杂志, 29(11): 2181-2186.
    王 萍, 桂福坤, 吴常文. 2010. 鱼类游泳速度分类方法的探讨. 中国水产科学, 17(5):1137-1145.
    郑金秀, 韩德举, 胡望斌, 等. 2010. 与鱼道设计相关的鱼类游泳行为研究. 水生态学杂志, 3(5): 104-109.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黎采微,路波,陈廷,刘流,朱海峰,刘德富,王翔,石小涛.2014.青鱼逃逸过程中的疾冲-滑行游泳行为.动物学杂志,49(6):860-866.

复制
文章指标
  • 点击次数:2452
  • 下载次数: 2510
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-05-08
  • 最后修改日期:2014-10-30
  • 录用日期:2014-10-27
  • 在线发布日期: 2014-11-06