低盐对菊黄东方鲀幼鱼生长、存活、耗氧、鳃Na /K -ATP酶以及肝抗氧化酶的影响
作者单位:

上海市水产研究所,上海市水产研究所,上海市水产研究所,上海市水产研究所,上海市水产研究所

基金项目:

国家公益性行业(农业)科研专项(201203065),上海长江口主要经济水生动物人工繁育工程技术研究中心(13DZ2251800)


Effects of low salinity on the growth, survival, oxygen consumption, gill Na /K -ATPase, and liver antioxidase of young fish tawny puffer Takifugu flavidus
Author:
Affiliation:

Shanghai Fisheries Research Institute,Shanghai Fisheries Technical Extension Station,Shanghai Fisheries Research Institute,Shanghai Fisheries Technical Extension Station,Shanghai Fisheries Research Institute,Shanghai Fisheries Technical Extension Station,Shanghai Fisheries Research Institute,Shanghai Fisheries Technical Extension Station,Shanghai Fisheries Research Institute,Shanghai Fisheries Technical Extension Station

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过探讨低盐(0、1.7、5、10、15和20)对菊黄东方鲀(Takifugu flavidus)幼鱼生长、存活、耗氧、鳃Na /K -ATP酶以及肝脏抗氧化酶的影响,研究了菊黄东方鲀幼鱼对低盐的适应性。结果显示,菊黄东方鲀幼鱼在盐度0组试验3周后全部死亡,盐度1.7组试验6周幼鱼大量死亡,最后成活率相当低(17.33%),盐度5、10、15和20组的幼鱼在整个试验中没有出现死亡;全长特定生长率在盐度1.7-20组之间没有显著差异,但在体质量特定生长率方面,1.7盐度组的比其他盐度组的显著低,5-20盐度组之间没有显著差异(p>0.05),最高的全长特定生长率和最高的体质量特定生长率均出现在10盐度组;前6周的饵料系数在盐度1.7~20组之间没有显著差异,但最高(1.27)和最低(1.17)的饵料系数分别出现在1.7和10盐度组,总饵料系数在5-20盐度组之间没有显著差异;幼鱼的耗氧率在5~20盐度组之间没有显著差异,但最低的耗氧率出现在10盐度组;最低的鳃Na /K -ATP酶(NKA)活性出现在10盐度组,盐度(5~20)与NKA活性的关系可以用二次函数来拟合(y = 0.0832x2 - 2.1252x 20.915,r2 = 0.9779),由此得到理论上最低NKA活性值出现在盐度12.77;肝脏超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-PX)活性在盐度1.7~20组之间均没有显著差异,而10和15盐度组的过氧化氢酶(CAT)活性比1.7和20盐度组的显著低,盐度(1.7~20)与CAT活性关系可以用二次函数来拟合(y = 0.2577x2 - 5.8076x 87.357,r2 = 0.8771),由此得到理论上最低CAT活性值出现在盐度11.27。研究结果表明,盐度1.7是菊黄东方鲀幼鱼的生存极限低盐,盐度5以上已经能适合其存活和生长,盐度10~15是的菊黄东方鲀幼鱼的最适宜盐度范围,适当降低盐度对菊黄东方鲀幼鱼的养殖生产是有利的。建议菊黄东方鲀幼鱼养殖盐度至少在5以上,最好在10~15范围

    Abstract:

    Tawny puffer (Takifugu flavidus) is a species found in China considered to have potential for aquaculture. Through the analysis of the growth, survival, oxygen consumption, gill Na /K -ATPase, and liver antioxidase of young fish tawny puffer at different low salinities (0, 1.7, 5, 10, 15, and 20), the ability of tawny puffer young fish to adapt to the low salinity environment was studied. The effects of salinity on the indices were analyzed using the one-way ANOVA after arcsin-transformation of data in case of percentages, followed by Student-Newman-Keuls test (SNK). All analyses were performed with a significance level of p<0.05. The results showed that all tawny puffer young fish at salinity of 0 died 3 weeks after experiment, and young fish at salinity of 1.7 appeared a large number of death 6 weeks after experiment, the final survival rate was very low (17.33%), all fish lived at salinities of 5 to 20 in the whole experimental process. Although no significant difference was observed in total length specific growth rate among 1.7-20 salinities, body weight specific growth rate at 1.7 salinity was significantly lower than that at other salinity treatment group, there was no significant difference among 5-20 salinities, both the highest total length specific growth rate and the highest body weight specific growth rate were found at salinity of 10. Although no significant difference was observed in feed coefficient among 1.7-20 salinities at first six weeks, the highest and lowest feed coefficient were found at salinities of 1.7 and 10, respectively; In addition, no significant difference was observed in total feed coefficient among 1.7-20 salinities. Although no significant difference was observed in the oxygen consumption rate among 5-20 salinities, the lowest oxygen consumption rate was found at salinity of 10. The lowest gill Na /K -ATPase (NKA) activity was also found at salinity of 10; The relationship between salinity (5-20) and the NKA activity was modelled by a quadratic equation (y = 0.0832x2 - 2.1252x 20.915, r2 = 0.9779); From the equation, the lowest NKA activity was predicted to occur at salinity of 12.77. Although no significant difference was observed in liver superoxide dismutase (SOD) and glutathion peroxidase (GSH-PX) activities among 1.7-20 salinities, the liver catalase (CAT) activities at salinity of 10 and 15 were significantly lower than that at salinity of 1.7 and 20; The CAT activities showed a parabolic relationship with salinity (1.7-20)(y = 0.2577x2 - 5.8076x 87.357, r2 = 0.8771), the lowest CAT activity was predicted to occur at salinity of 11.27. Therefore, the critical survival low salinity of tawny puffer young fish is close to 1.7, the salinity of not less than 5 can be suitable for growth and survival of the young fish, the optimal salinity range for tawny puffer young fish is from 10 to 15. The results suggest that cultural salinity of tawny puffer young fish is not less than 5, and the best cultural salinity range is 10-15, Appropriate to reduce salinity in the cultural production of tawny puffer young fish is advantageous. The results of this study are useful in increasing the cultural production of the species

    参考文献
    Aristizabal-Abud EO. 1992. Effects of salinity and weight on routine metabolism in the juvenile croaker, Micropogonias furnieri (Desmarest 1823). Journal of Fish Biology, 40: 471–472.
    Claireaux G, Lagardère JP. 1999. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. Journal of Sea Research, 42: 157–168.
    Fielder DS, Bardsley WJ, Allan DL, et al. 2005. The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture, 250: 201–214.
    Gracia-López V, Kiewek-Martínez M, Maldonado-García M. 2004. Effects of temperature and salinity on artificially reproduced eggs and larvae of the leopard grouper Mycteroperca rosacea. Aquaculture, 237: 485–498.
    Hart PR, Purser GJ. 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Günther, 1982). Aquaculture, 136: 221–230.
    Imsland AK, Gústavsson A, Gunnarsson S, et al. 2008. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture, 274: 254–259.
    Kamler E. 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Reviews in Fish Biology and Fisheries, 12: 79–103.
    Kikuchi K, Furuta T, Ishizuka H, et al. 2007. Growth of tiger puffer, Takifugu rubripes, at different salinities. Journal of the World Aquaculture Society, 38 (3): 427–434.
    Lyytik?inen L, Jobling M. 1998. The effect of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. Journal of Fish Biology, 52: 1186–1198.
    Meade ME, Doeller JE, Kraus DW, et al. 2002. Effects of temperature and salinity on weight gain, oxygen consumption rate, and growth efficiency in juvenile red-claw crayfish Cherax quadricarinatrcs. Journal of the World Aquaculture Society, 33(2): 188-198.
    Morgan JD, Iwama GK. 1991. Effects of salinity on growth, metabolism, and ionic regulation in juvenile rainbow trout and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 48: 2083–2094.
    Parihar MS, Javeri T, Hemnani T, et al.1997. Response of superoxide dismutase,glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22( 3) : 151-156.
    Sampaio LA, Bianchini A. 2002. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. Journal of Experimental Marine Biology and Ecology, 269: 187–196.
    Shi YH, Zhang GY, Liu JZ, et al. 2011. Effects of temperature and salinity on oxygen consumption of tawny puffer, Takifugu flavidus juvenile. Aquaculture Research, 42:301–307.
    Shi YH, Zhang GY, Liu JZ, et al. 2012a. Induced ovulation in cultured tawny puffer Takifugu flavidus by injections of LHRH-a. Journal of Applied Ichthyology, 28: 22–25.
    Shi YH, Zhang GY, Liu JZ, et al. 2012b. Effects of photoperiod on embryos and larvae of tawny puffer, Takifugu flavidus. Journal of the World Aquaculture Society, 43 (2): 277–285.
    Shi YH, Zhang GY, Zhu YZ, et al. 2010. Effects of temperature on fertilized eggs and larvae of tawny puffer, Takifugu flavidus. Aquaculture Research, 41:1741–1747.
    Shi ZH, Huang XX, Fu RB, et al. 2008. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture, 275:306–310.
    Styczynska-Jurewicz. 1970. Bioenergetics of osmoregulation in aquatic animals. Polskie Archivum Hydrobiol, 17: 295-302.
    Zhang GY, Shi YH, Zhu YZ, et al. 2010. Effects of salinity on embryos and larvae of tawny puffer, Takifugu flavidus. Aquaculture, 302: 1-75.
    陈林,周文玉,潘桂平.2012. 盐度对菊黄东方鲀受精卵孵化和仔鱼生长的影响.广东海洋大学学报,32(4):73-77.
    潘鲁青,唐贤明,刘泓宇,等. 2006. 盐度对褐牙鲆(Paralichthys olivaceus) 幼鱼血浆渗透压和鳃丝Na -K -ATPase 活力的影响. 海洋与湖沼,37 ( 1 ) : 1-6.
    屈亮, 庄平, 章龙珍,等.2010. 盐度对俄罗斯鲟幼鱼血清渗透压、离子含量及鳃丝Na /K -ATP酶活力的影响.中国水产科学,17(2):243-251.
    施永海,张根玉,刘建忠,等.2010a. 菊黄东方鲀仔稚鱼的生长、发育及行为生态.水产学报,34(10):1509-1517.
    施永海,张根玉,朱雅珠,等.2007. 菊黄东方鲀河口区海水全人工繁育技术研究.水产科技情报,34(3):99-102,106.
    施永海,张根玉,朱雅珠,等.2010b. 河口区养殖菊黄东方鲀的胚胎发育.大连海洋大学学报,25(3):238-242.
    谢永德,施永海,张海明,等.2012. 池养菊黄东方鲀一龄越冬鱼种的生长特性.浙江海洋学院学报(自然科学版), 31(4):340-344.
    杨竹舫,张汉秋,匡云华,等.1991. 渤海湾菊黄东方鲀(Takifugu flavidus)生物学的初步研究.海洋通报,10(6):44-47.
    尹飞, 孙鹏, 彭士明,等.2011. 低盐度胁迫对银鲳幼鱼肝脏抗氧化酶、鳃和肾脏ATP 酶活力的影响.应用生态学报,22(4):1059-1066.
    虞建辉,周志云.2002. 菊黄东方鲀低盐度人工育苗技术.科学养鱼,(3):12-13.
    于娜,李加儿,区又君,等.2011. 盐度胁迫对鲻鱼幼鱼鳃丝Na /K -ATP 酶活力和体含水量的影响.动物学杂志,46(1):93-99.
    张福崇,李怡群,王六顺.2003. 北方地区菊黄东方鲀全人工育苗试验.河北渔业,130(4):32-33.
    张国政,黄国强,田思娟,等. 2008. 盐度胁迫及恢复对褐牙鲆幼鱼生长、能量分配和身体成分的影响.水产学报,32(3):402-410.
    郑惠东.2008. 盐度对菊黄东方鲀受精卵发育和仔稚鱼生长的影响.福建水产,3:12-15.
    郑惠东,钟建兴,蔡良候,等.2007. 菊黄东方鲀胚胎及仔稚幼鱼的发育.台湾海峡, 26(1):108-114.
    朱爱意,赵向炯,付俊,等.2007. 褐菖鲉耗氧率及窒息点的初步研究.海洋水产研究, 28(1):95-100.
    引证文献
    引证文献 [1]
引用本文

施永海,张根玉,刘建忠,张海明,刘永士.2015.低盐对菊黄东方鲀幼鱼生长、存活、耗氧、鳃Na /K -ATP酶以及肝抗氧化酶的影响.动物学杂志,50(3):415-425.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-02
  • 最后修改日期:2015-04-30
  • 录用日期:2015-04-10
  • 在线发布日期: 2015-05-22