野生棘胸蛙消化器官蛋白酶的分布及酶活力
作者:
作者单位:

浙江师范大学化学与生命科学学院生态研究所 金华,浙江师范大学化学与生命科学学院生态研究所 金华,浙江师范大学化学与生命科学学院生态研究所 金华

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Distribution and Activity of Protease in Digestive Organs of Wild Giant Spiny Frog, Quasipaa spinosa
Author:
Affiliation:

Institute of Ecology, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究在不同pH和温度条件下以离体方式对野生棘胸蛙( Quasipaa spinosa)不同消化器官的蛋白酶活力进行了分析。结果表明,食道、胃、胰的蛋白酶活力受到酶体系pH的显著影响( P < 0.05),且随pH升高呈现典型的单峰型活力曲线。食道和胃的蛋白酶活力在pH为1.5时达到峰值,胰的酶活力在pH为9.6时达到峰值,而肠道酶活力在pH为7.4时达到峰值。各消化器官蛋白酶活力具有明显的温度依赖性( P < 0.05),酶活力随温度升高也均呈出典型的单峰型活力曲线,不同消化器官的最大酶活力温度分别为,食道50℃、胃50℃、胰45℃、前肠45℃、后肠45℃、直肠45℃。在最大酶活力的pH和30℃条件下,各消化器官蛋白酶活力由高到低依次为胰、食道、胃、直肠、前肠、后肠。由此可见,蛋白酶在棘胸蛙消化系统的分布具有明确的规律性,且不同来源的蛋白酶需要在特定pH和温度下才能表现出最大的反应活性。

    Abstract:

    This study investigated protease activities in different digestive organs of wild giant spiny frog (Quasipaa spinosa) in the range of pH 0.5 to 10.0 at 30℃ and reaction temperature 15 to 60℃ at optimum pH in vitro. The protease activity was measured using the Folin-phenol method. The data were statistically analyzed by One-way ANOVA and LSD. The results showed that pH could affect protease activities of esophagus, stomach and pancreas significantly (P < 0.05), and their dynamic curves of protease activities were typically unimodal with increasing pH (Fig. 1).The protease activities of esophagus, stomach, pancreas and intestine were maximal at pH 1.5, 1.5, 9.6 and 7.4, respectively. The protease activities of digestive organs showed an obvious temperature dependence (P < 0.05), and the curves were also typically unimodal (Fig. 2). The protease activities of esophagus, stomach, pancreas, foregut, hindgut and rectum attained maximum value at temperature 50℃, 50℃, 45℃, 45℃, 45℃ and 45℃, respectively. Under the conditions of 30℃ and optimal pH mentioned above, digestive organs were arranged in order of descending protease activities: pancreas, esophagus, stomach, rectum, foregut and hindgut. In conclusion, there obviously exists a regular protease distribution in digestive system of this species, and the enzymes from different organs can show maximal activities at specific pH values and temperatures.

    参考文献
    Balogun R A, Fisher O. 1970. Studies on the digestive enzymes of the common African toad Bufo regularis boulenger. Comparative Biochemistry and Physiology, 33(4): 813-820.
    Bitterlich G. 1985. Digestive enzyme pattern of two stomachless filter feeders, silver carp, Hypophthalmichthys molitrix Val., and bighead carp, Aristichthys nobilis Rich. Journal of Fish Biology, 27(2): 103-112.
    Corrêa C F, de Aguiar L H, Lundstedt L M, et al. 2007. Responses of digestive enzymes of tambaqui ( Colossoma macropomum) to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 147(4): 857-862.
    Das K M, Tripathi S D. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture, 92: 21-32.
    Galgani F. 1985. Radioimmunoassay of shrimp trypsin: application to the larval development of Penaeus japonicus Bate. Journal of Experimental Marine Biology and Ecology, 87: 145-151.
    Hofer R. 1979. The adaptation of digestive enzymes to temperature, season and diet in roach, Rutilus rutilus and rudd Scardinius erythrophthalmus: Proteases. Journal of Fish Biology, 15(4): 373-379.
    Kamarudin M S, Jones D A, Le Vay, et al. 1994. Ontogenetic change in digestive enzyme activity during larval development of Macrobrachium rosenbergii. Aquaculture, 123: 323-333.
    McGeachin R L, Welbourne W P. 1971. Amylase in tissues of the bullfrog, Rana catesbiana and the leopard frog, Rana pipiens. Comparative Biochemistry and Physiology Part A: Physiology, 38(2): 457-460.
    Naya D E, Farfán G, Sabat P, et al. 2005. Digestive morphology and enzyme activity in the Andean toad Bufo spinulosus: hard-wired or flexible physiology? Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 140(2): 165-170.
    Reeder W G. 1964. PhysiologySofStheSAmphibia. New York: Academic Press, 99-149.
    Sabat P, Riveros J M, López-Pinto C. 2005. Phenotypic flexibility in the intestinal enzymes of the African clawed frog Xenopus laevis. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 140(1): 135-139.
    Taylor P M, Tyler M J. 1986. Pepsin in the toad Bufo marinus. Comparative Biochemistry and Physiology Part A:Molecular Integrative Physiology, 84 (4): 669 - 672.
    Teo L H, Chen T W, Tan L L. 1990. The proteases of the common Malayan toad Bufo melanostictus Schneider. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 96(4): 715-720.
    白建梅, 肖玲远, 胡思玉. 2007. pH值对贵州疣螈消化系统蛋白酶活性的影响. 江西农业学报, 19(3): 80-81.S
    陈章宝, 郑曙明. 2001. 淡水白鲳、团头鲂、黄颡鱼主要消化酶活力研究. 四川畜牧兽医学院学报, 15 (3): 10-15.
    龙良启, 白东清, 梁拥军等. 1997. 幼鳖胃肠胰组织中主要消化酶活性分布[J]. 动物学杂志, 32(6): 23-26.
    梅景良, 马燕梅, 张红星等. 2006. 夏、冬两季黑鲷消化酶活力的比较及反应温度和pH对酶活力的影响. 海洋学报, 28(4):167-171.
    倪寿文, 桂远明, 刘涣亮. 1993. 草鱼、鲤、鲢、鳙和尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨. 动物学报, 39 (2): 160-167.
    奚刚, 许梓荣, 钱利纯等. 1999. 牛蛙幼体消化酶活力及其机体主要营养成分含量变化的研究. 经济动物学报, 3(3): 50-56.
    叶元土, 林仕梅, 罗莉等. 1998. 温度、pH 值对南方大口鲶、长吻鮠蛋白酶和淀粉酶活力的影响. 大连水产学院学报, 13(2):16-23.
    殷宁, 赵强, 李朝辉. 2001. 暗纹东方鲀蛋白酶活性的研究. 南京师大学报, 24(1):101-104.
    张盛周, 朱升学, 刘明等. 2004. 黑斑蛙消化系统蛋白酶的活力. 动物学杂志, 39(1):25-28
    张盛周, 朱升学, 佟媛等. 2005. pH值和温度对虎纹蛙消化系统蛋白酶活力的影响. 安徽师范大学学报, 28(2): 200-202.
    朱联九, 朱升学, 程文娟等. 2008. 牛蛙主要消化酶的分布及pH和温度对消化酶活力的影响. 激光生物学报, 17(4): 496-501.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢展望,颉志刚,胡一中,郑荣泉.2015.野生棘胸蛙消化器官蛋白酶的分布及酶活力.动物学杂志,50(5):765-772.

复制
文章指标
  • 点击次数:2310
  • 下载次数: 2681
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-10-24
  • 最后修改日期:2015-06-17
  • 录用日期:2015-06-17
  • 在线发布日期: 2015-09-16