高原鼠兔肝中Ldh-c基因的表达及其对无氧糖酵解水平的影响
作者:
作者单位:

青海大学农牧学院 西宁810016,青海大学 西宁810016,青海大学医学院 西宁810016,青海大学医学院 西宁810016,青海大学农牧学院 西宁810016,青海大学 西宁810016

基金项目:

国家自然科学(Nos. 31260512);青海省自然科学(No.2012-Z-905);* 通讯作者,E-mail: weidengbang@163.com;第一作者介绍魏琳娜,女,硕士;研究方向野生动植物资源保护;E-mail:weilinna92@163.com。;国家自然科学基金项目(面上项目,重点项目,重大项目)


The Function of the Sperm-specific Lactate Dehydrogenase Gene (Ldh-c) in Plateau Pika Liver
Author:
Affiliation:

CollegeSof Agriculture and Animal Husbandry,Qinghai University,Qinghai University,School of Medicine, Qinghai University,School of Medicine, Qinghai University,CollegeSof Agriculture and Animal Husbandry,Qinghai University,Qinghai University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    高原鼠兔(Ochotona curzoniac)对高原低氧环境有很强的适应性。我们研究发现,精子特异性乳酸脱氢酶(LDH-C4)在高原鼠兔肝脏组织中表达。为了为了阐明LDH-C4在高原鼠兔肝脏组织中的作用,本文应用荧光定量PCR和western blot方法,测定了精子特异性乳酸脱氢酶基因(Ldh-c)在高原鼠兔肝脏组织中的表达水平;应用对 LDH-C4 特异性的抑制剂(N-isopropyl oxamate),通过肌肉注射后,研究了抑制剂对高原鼠兔肝脏组织中LDH比活力,LD和ATP含量的影响。结果表明,在mRNA和蛋白水平,Ldh-c基因在高原鼠兔肝脏组织中均有表达,相对表达水平分别为0.22±0.04和0.97 ±0.20;当肌肉注射1ml 1M的抑制剂时,血液中抑制剂浓度为0.08mM,肝脏组织中LDH比活力(抑制剂组和空白对照组LDH比活力分别为4.99±0.29U/mg?prot和7.36±0.42U/mg?prot)、LD(抑制剂组和空白对照组LD含量分别为0.38±0.05 mmol/g?prot和0.53±0.03mmol/g?prot)和ATP(抑制剂组和空白对照组ATP含量分别为5.84±0.83nmol/mg?prot和7.78±1.06nmol/mg?prot)含量显著下降,抑制剂对LDH,LD和ATP的抑制率分别为30.19%、32.22%和24.94%。以上结果说明,Ldh-c在高原鼠兔肝脏组织中表达,LDH-C4通过催化无氧糖酵解过程,为其肝脏组织生命活动提供至少24%的ATP,这使高原鼠兔减小了在低氧环境中对氧气的依赖,增强了对低氧环境的适应力。

    Abstract:

    The plateau pika (Ochotona curzoniae) has a strong adaptability to hypoxic plateau environment. We found that the sperm-specific lactate dehydrogenase (LDH-C4) gene expressed in plateau pika liver. In order to shed light on the function of LDH-C4 in plateau pika liver, we determined the expression levels of Ldh-c gene in plateau pika liver by real-time PCR and western blot. After injecting N-isopropylSoxamate, a LDH-C4 specific inhibitor, in skeletal muscle of hind legs, the activities of LDH, and the contents of LD and ATP in plateau pika liver were measured. The results indicated that the expression levels of Ldh-c mRNA and protein were 0.22±0.04 and 0.97±0.20, respectively. After 30 minutes injectedS1 ml 1 M N-isopropylSoxamate in biceps femorisSmuscle, the concentration of N-isopropyl oxamate in blood was 0.08 mM. In the liver of inhibitor group and control group, the LDH activities were 4.99±0.29 U/mg?prot and 7.36±0.42 U/mg?prot, the contents of LD were 0.38±0.05 mmol/g?prot and 0.53±0.03 mmol/g?prot, and ATP were 5.84±0.83 nmol/mg?prot and 7.78±1.06 nmol/mg?prot, respectively. The LDH activities, the contents of LD and ATP in liver of the inhibitor group were decreased significantly, and the inhibition rate of N-isopropyl oxamateSto LDH, LD and ATPSin plateau pika liver were 30.19%、32.22% and 24.94%, respectively. These results indicated that the sperm-specific lactate dehydrogenase gene expressed in plateau pika liver, the pika liver got at least 24% ATP for its life activities by catalyzing anaerobic glycolysis. As a result, the plateau pika reduced dependence on oxygen and enhanced the adaptation to the hypoxic environments.

    参考文献
    Avivi A, Resnick M B, Nevo E, et al. 1999. Adaptive hypoxic tolerance in the subterranean mole rat spalax ehrenbergi: the role of vascular endothelial growth factor. FEBS Letters, 452(3): 133-140.
    Battellino L J, Jaime F R, Blanco A. 1968. Kinetic properties of rabbit testicular lactate dehydrogenase isozyme. The Journal of Biological Chemistry, 243(19): 5185-5192.
    Beall C M, Laskowski D, Strohl K P, et al. 2001. Pulmonary nitric oxide in mountion dwellers. Nature, 414(6862): 411-412.
    Blanco A, Zinkham W H. 1963. Lactate dehydrogenases in human testes. Science, 139(3555): 601-602.
    Cahn R D, Zwilling E, Kaplan N O, et al. 1962. Nature and Development of Lactic Dehydrogenases: the two major types of this enzyme form molecular hybrids which change in makeup during development. Science, 136 (3520): 962-969.
    Clausen J, Ovlisen B. 1965. Lactate dehydrogenase is oenzymes of human semen. Biochemical Journal, 97(2): 513-517.
    Coronel C E, Burgos C, Gerez de Burgos N M, et al. 1983. Catalytic properties of the sperm-specific lactate dehydrogenase (LDH X or C4) from different species. Journal of Experimental Zoology, 225(3): 379-385.
    Duan C, Goldberg E. 2003. Inhibition of lactate dehydrogenase C4 (LDH-C4) blocks capacitation of mouse sperm in vitro. Cytogenetic and Genome Research, 103(3-4): 352-359.
    Everse J, Kaplan N O. 1973. Lactate dehydrogenases: structure and function. Advances in Enzymology and Related Areas of Molecular Biology, 37: 61-133.
    Ge R L, Kubo K, Kobayashi T, et al. 1998.Blunted hypoxic pulmonary vasocon- strictive response in the rodent Ochotona curzoniae (pika) at high altitude. American Journal of Physiology, 274(5 Pt 2): H1792-1799.
    Goldberg E. 1975. Lactate dehydrogenase-X from mouse testes and spermatozoa. Methods in Enzymology, 41: 318-323.
    Goldberg E. 1985. Reproductive implications of LDH-C4 and other testis-specific isozymes. Experimental and Clinical Immunogenetics, 2(2): 120-124.
    Gonzales G F. 2013. Serum testosterone levels and excessive erythrocytosis during the process of adaptation to high altitudes. Asian Journal of Andrology, 15(3): 368-374.
    Gupta G S. 1999. LDHC4: a unique target of mammalian spermatozoa. Critical Reviews in Biochemistry and Molecular Biology, 34(6): 361-385.
    Gupta G S. 2012. LDH-C4: a target with therapeutic potential for cancer and contraception. Molecular and Cellular Biochemistry, 371(1-2): 115-127.
    Hereng T H, Elgst?en K B, Cederkvist F H, et al. 2011. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa. Human Reproduction, 26(12): 3249-3263.
    Hoppeler H, Vogt M, Weibel E R, et al. 2003. Response of skeletal muscle mitochondria to hypoxia. Experimental Physiology, 88(1): 109-119.
    Kilic B A, Dingil O, Erkula G, et al. 2004. Evaluation of the muscles around the knee in rabbits whose anterior cruciate and/or medial collateral ligaments were dissected. Archives of Orthopaedic and Trauma Surgery, 124(9): 626-630.
    Kim Y H, Haidl G, Schaefer M, et al. 2007. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm Flagellar Energy Carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Developmental Biology, 302(2): 463-476.
    Krisfalusi M, Miki K, Magyar P L, et al. 2006. Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biology of Reproduction, 75(2): 270-278.
    LeVan K M, Goldberg E. 1991. Properties of human testis-specific lactate dehydrogenase expressed from Escherichia coli. Biochem Journal, 273(Pt3): 587-592.
    Li S S. 1989. Lactate dehydrogenase isoenzymes A (muscle), B (heart) and C (testis) of mammals and the genes coding for these enzymes. Biochemical Society Transactions, 17(2): 304-307.
    Li S S, O'Brien D A, Hou E W, et al. 1989. Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells. Biology of Reproduction, 40(1): 173-180.
    Mukai C, Okuno M. 2004. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biology of Reproduction, 71(2): 540-547.
    Nascimento J M, Shi L Z, Tam J, et al. 2008. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping. Journal of Cellular Physiology, 217(3): 745-751.
    Odet F, Duan C, Willis W D, Goulding E H, et al. 2008. Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biology of Reproduction, 79(1): 26-34.
    Odet F, Gabel S A, Williams J, et al. 2011. Lactate dehydrogenase C and energy metabolism in mouse sperm. Biology of Reproduction, 85(3): 556-564.
    Rodríguez-Páez L, Guzmán-Ibarra R, Acu?a-González C, et al. 2002. The study of N-isopropyl oxamate on sperm motility and fertility, in mice. Proceedings of the Western Pharmacology Society, 45: 171-173.
    Smithies O. 1959. Zone electrophoresis in starch gels and its application to studies of serum proteins. Advances in Protein Chemistry, 14: 65-114.
    SUN S Z, WEI L, WEI D B, et al. 2013. Differences of glycolysis in skeletal muscle and lactate metabolism in liver between plateau zokor(Myospalax baileyi) and plateau pika (Ochotona curzoniae). Acta Physiologica Sinica, 65(3): 276-284.
    Wang D W, Wei L, Wei D B, et al. 2013. Testis-specific lactate dehydrogenase is expressed in somatic tissues of plateau pikas. FEBS Open Bio, 3: 118-123.
    Wang X J, Wei D B, Wei L, et al. 2008. Characteristics of pulmonary acinus structure in the plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzniae). Acta Zoologica Sinica, 54(3): 531-539.
    Weibel E R. 1999. Understanding the limitation of O2 supply through comparative physiology. Respiratory Physiology, 118(2-3): 85-93.
    Wei D B, Wei L, Zhang J M, et al. 2006. Blood-gas properties of plateau zokor (Myospalax baileyi). Comparative biochemistry and physiology. Part A, Molecular integrative physiology, 145(3): 372-375.
    Wheat T E, Goldberg E. 1977. An allelic variant of the sperm-specific lactate dehydrogenase C4 (LDH-X) isozyme in humans. Journal of Experimental Zoology, 202(3): 425-430.
    Wong C, Rodríguez-Páez L, Nogueda B, et al. 1997. Selective inhibition of the sperm-specific lactate dehydrogenase isozyme-C4 by N-isopropyl oxamate. Acta Physiologica Sinica, 24(8): 519-519.
    Zhu S H, Qi X Z, Wang X J, et al. 2009. Difference in oxygen uptake in skeletal muscles between plateau zokor (Myospalax rufescens baileyi) and plateau pika (Ochotona curzoniae). Acta Physiologica Sinica, 61(4): 373-378.
    陈秋红, 刘凤云. 2003. 高原鼠兔低氧适应机制的研究概况. 动物学杂志, 38(5): 109-113.
    陈秋红. 2001. 高原鼠兔肺动脉血管功能及形态变化. 中国应用生理学杂志, 17(2): 178-181.
    顾浩平, 杨之, 滕国奇, 等. 1991. 高原鼠兔血红蛋白氧亲和力P50的测定. 中国应用生理学杂志, 7(4): 365-367.
    刘国富, 温得启, 胡晓梅. 1985. 高原鼠兔和高原鼢鼠乳酸脱氢酶同工酶的初步研究. 兽类学报, 5(3): 223-228.
    牛亚菲. 1999. 青藏高原生态环境问题研究. 地理科学进展, 18(2) : 163-171.
    齐新章, 王晓君, 朱世海, 等. 2008. 高原鼢鼠和高原鼠兔心脏对低氧环境的适应. 生理学报, 60(3): 348-354.
    阮宗海, 陈华伟, 陈秋红, 等. 2000. 不同海拔高原鼠兔、大白鼠血红蛋白电泳及血液学对比观察. 中国应用生理学杂志, 16(1): 91-95.
    王晓君, 魏登邦, 魏莲, 等. 2008. 高原鼢鼠和高原鼠兔红细胞低氧适应特征.四川动物, 27(6): 1100-1103.
    魏登邦, 张建梅, 魏莲, 等. 2006. 高原鼢鼠对低氧高二氧化碳环境适应的相关生理指标的季节性变化. 动物学报, 52(5): 871-877.
    杨静, 李金刚, 何建平, 等. 2006. 甘肃鼢鼠血象及其与低氧适应的关系. 动物学杂志, 41(2): 112-115.
    郑亚宁, 朱瑞娟, 王多伟, 等. 2011. 高原鼢鼠血管内皮生长因子基因编码和mRNA的表达以及微血管密度:与其它鼠类的比较. 生理学报, 63(2): 155-163.
    朱瑞娟, 饶鑫峰, 魏登邦, 等. 2012. 高原鼢鼠和高原鼠兔肝脏苹果酸天冬氨酸穿梭系统的功能差异. 生理学报, 64(2): 177-186.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏琳娜,魏莲,汪洋,李筱,许利娜,魏登邦.2015.高原鼠兔肝中Ldh-c基因的表达及其对无氧糖酵解水平的影响.动物学杂志,50(6):846-854.

复制
文章指标
  • 点击次数:2709
  • 下载次数: 2693
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-01-07
  • 最后修改日期:2015-09-28
  • 录用日期:2015-08-25
  • 在线发布日期: 2015-11-24