冬眠动物骨骼肌生理适应及机制的研究进展
作者:
作者单位:

西北大学生命科学学院,西北大学生命科学学院

基金项目:

国家自然科学(30770273), 2011年度高等学校博士学科点专项科研基金资助课题(20116101110013)及陕西省国际科技合作与交流计划项目(2013KW26-01)


Physiological Adaptation of Skeletal Muscles and Potential Mechanism in Hibernators
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    非冬眠动物的骨骼肌在废用条件下会发生明显的萎缩。冬眠动物在历经数月的冬眠期骨骼肌废用后,仍能保持较完整的形态结构以及良好的收缩功能,成为天然的抗废用性肌萎缩动物模型。探明冬眠动物骨骼肌对废用的生理适应机制,是生理生态学领域的重要课题之一。本文从形态结构、肌纤维类型和收缩功能等方面综述了冬眠动物对冬眠期骨骼肌废用状态的生理适应,并从蛋白质代谢、生长与分化的调控、代谢类型的调控、氧化应激以及线粒体结构与氧化能力等方面分析了冬眠期骨骼肌生理适应的可能机制。

    Abstract:

    Disuse leads to skeletal muscle atrophy in non-hibernating mammals. Despite facing prolonged periods of hibernation disuse, skeletal muscles in hibernators are well protected, characterized with integrative structure and excellent contractile ability during hibernation. Therefore, hibernators provide a natural model to study the mechanisms preventing disuse muscles atrophy. Understanding the mechanisms of the physiological adaptation in hibernators’ skeletal muscles is one of the major topics in physiological ecology field. However, such mechanisms in hibernators have not yet been elucidated. In this paper, physiological adaption of skeletal muscles to hibernation disuse is reviewed with respect to morphology, fiber type distribution contractile property. Moreover, the review focuses on the potential adaptive mechanism, including protein metabolism, regulations of growth, differentiation and metabolic type, oxidative stress, and mitochondrial structure and oxidative capacity.

    参考文献
    Allan M E, Storey K B. 2012. Expression of NF-κB and downstream antioxidant genes in skeletal muscle of hibernating ground squirrels, spermophilus tridecemlineatus. Cell Biochem Funct, 30 (2): 166-174.
    Andres-Mateos E, Mejias R, Soleimani A, et al. 2012. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One, 7 (11): e48884.
    Appell H J. 1986. Morphology of immobilized skeletal muscle and the effects of a pre- and postimmobilization training program. Int J Sports Med, 7 (1): 6-12.
    Bajotto G, Shimomura Y. 2006. Determinants of disuse-induced skeletal muscle atrophy: Exercise and nutrition countermeasures to prevent protein loss. J Nutr Sci Vitaminol (Tokyo), 52 (4): 233-247.
    Bialek P, Morris C, Parkington J, et al. 2011. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiol Genomics, 43 (19): 1075-1086.
    Bodine S C. 2013. Hibernation: The search for treatments to prevent disuse-induced skeletal muscle atrophy. Exp Neurol, 248: 129-135.
    Boonstra R, Mo K, Monks D A. 2014. Managing anabolic steroids in pre-hibernating Arctic ground squirrels: obtaining their benefits and avoiding their costs. Biol Lett, 10(11): 20140734.
    Boonyarom O, Inui K. 2006. Atrophy and hypertrophy of skeletal muscles: Structural and functional aspects. Acta Physiol (Oxf), 188 (2): 77-89.
    Booth F W, Criswell D S. 1997. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med, 18 Suppl 4: S265-269.
    Brooks N E, Myburgh K H, Storey K B. 2011. Myostatin levels in skeletal muscle of hibernating ground squirrels. J Exp Biol, 214 (Pt 15): 2522-2527.
    Brown J C, Chung D J, Cooper A N, et al. 2013. Regulation of succinate-fuelled mitochondrial respiration in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. J Exp Biol, 216 (Pt 9): 1736-1743.
    Choi H, Selpides P J, Nowell M M, et al. 2009. Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts. Am J Physiol Regul Integr Comp Physiol, 297 (3): R578-586.
    Cotton CJ, Harlow HJ. 2010. Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators. Physiol Biochem Zool, 83 (3): 551-560.
    Fedorov V B, Goropashnaya A V, Toien O, et al. 2009. Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (ursus americanus). Physiol Genomics, 37 (2): 108-118.
    Feidantsis K, Anestis A, Vasara E, et al. 2012. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (pelophylax ridibundus). Comp Biochem Physiol A Mol Integr Physiol, 162 (4): 331-339.
    Fitts R H, Riley D R, Widrick J J. 2000. Physiology of a microgravity environment invited review: Microgravity and skeletal muscle. J Appl Physiol (1985), 89 (2): 823-839.
    Fitts R H, Riley D R, Widrick J J. 2001. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol, 204 (Pt 18): 3201-3208.
    Fuster G, Busquets S, Almendro V, et al. 2007. Antiproteolytic effects of plasma from hibernating bears: A new approach for muscle wasting therapy? Clin Nutr, 26 (5): 658-661.
    Gao Y F, Wang J, Wang H P, et al. 2012. Skeletal muscle is protected from disuse atrophy in hibernating daurian ground squirrels. Comp Biochem Physiol A Mol Integr Physiol , 161: 296-300.
    Harlow H J, Lohuis T, Beck T D, et al. 2001. Muscle strength in overwintering bears. Nature, 409 (6823): 997.
    Hikida R S, Gollnick P D, Dudley G A, et al. 1989. Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med, 60 (7): 664-670.
    Hindle A G, Karimpour-Fard A, Epperson L E, et al. 2011. Skeletal muscle proteomics: Carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation. Am J Physiol Regul Integr Comp Physiol, 301 (5): R1440-1452.
    Hudson N J, Franklin C E. 2002. Maintaining muscle mass during extended disuse: Aestivating frogs as a model species. J Exp Biol, 205 (Pt 15): 2297-2303.
    Ivakine E A, Cohn R D. 2014. Maintaining skeletal muscle mass: Lessons learned from hibernation. Exp Physiol, 99 (4): 632-637.
    James R S, Tallis J A, Seebacher F, et al. 2011. Daily torpor reduces mass and changes stress and power output of soleus and edl muscles in the djungarian hamster, phodopus sungorus. J Exp Biol, 214 (Pt 17): 2896-2902.
    James R S, Staples J F, Brown J C, et al. 2013. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, ictidomys tridecemlineatus. J Exp Biol, 216 (Pt 14): 2587-2594.
    Jiang S f, Gao Y F, Zhang Y M, et al. 2015a. The research on the formation mechanism of extraordinary oxidative capacity of skeletal muscle in hibernating ground squirrels (Spermophilus dauricus). Zoological Studies. 54(1):46-51.
    Jiang S f, Guo S P, Xue W, et al. 2015b. Seasonal oxidative capacity of skeletal muscles in hibernating Daurian ground squirrels (Spermophilus dauricus). Can. J. Zool. 93: 593-598.
    Kornfeld S F, Biggar K K, Storey K B. 2012. Differential expression of mature micrornas involved in muscle maintenance of hibernating little brown bats, myotis lucifugus: A model of muscle atrophy resistance. Genomics Proteomics Bioinformatics, 10 (5): 295-301.
    Lambertz D, Perot C, Kaspranski R, et al. 2001. Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol (1985), 90 (1): 179-188.
    Lazareva M V, Trapeznikova K O, Vikhliantsev I M, et al. 2012. Seasonal changes in the isoform composition of the myosin heavy chains in skeletal muscles of hibernating ground squirrels spermophilus undulatus. Biofizika, 57 (6): 982-987.
    Lee K, Park J Y, Yoo W, et al. 2008. Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy: Proteomic and molecular assessment. J Cell Biochem, 104 (2): 642-656.
    Lee K, So H, Gwag T, et al, Yamashita M, Choi I. 2010. Molecular mechanism underlying muscle mass retention in hibernating bats: Role of periodic arousal. J Cell Physiol, 222 (2): 313-319.
    Leivo I, Kauhanen S, Michelsson J E. 1998. Abnormal mitochondria and sarcoplasmic changes in rabbit skeletal muscle induced by immobilization. APMIS, 106 (12): 1113-1123.
    Lin D C, Hershey J D, Mattoon J S, et al. 2012. Skeletal muscles of hibernating brown bears are unusually resistant to effects of denervation. J Exp Biol, 215 (Pt 12): 2081-2087.
    Lohuis T D, Harlow H J, Beck T D. 2007a. Hibernating black bears (ursus americanus) experience skeletal muscle protein balance during winter anorexia. Comp Biochem Physiol B Biochem Mol Biol, 147 (1): 20-28.
    Lohuis T D, Harlow H J, Beck T D, et al. 2007b. Hibernating bears conserve muscle strength and maintain fatigue resistance. Physiol Biochem Zool, 80 (3): 257-269.
    Malatesta M, Perdoni F, Battistelli S, et al. 2009. The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice. BMC Cell Biol, 10: 19.
    Nowell M M, Choi H, Rourke B C. 2011. Muscle plasticity in hibernating ground squirrels (spermophilus lateralis) is induced by seasonal, but not low-temperature, mechanisms. J Comp Physiol B, 181 (1): 147-164.
    Postnikova G B, Tselikova S V, Kolaeva S G, et al. 1999. Myoglobin content in skeletal muscles of hibernating ground squirrels rises in autumn and winter. Comp Biochem Physiol A Mol Integr Physiol, 124 (1): 35-37.
    Riley D A, Bain J L, Thompson J L, et al. 2000. Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. J Appl Physiol (1985), 88 (2): 567-572.
    Rourke B C, Yokoyama Y, Milsom W K, et al. 2004a. Myosin isoform expression and mafbx mrna levels in hibernating golden-mantled ground squirrels (spermophilus lateralis). Physiol Biochem Zool, 77 (4): 582-593.
    Rourke B C, Cotton C J, Harlow H J, et al. 2006. Maintenance of slow type I myosin protein and mrna expression in overwintering prairie dogs (cynomys leucurus and ludovicianus) and black bears (ursus americanus). J Comp Physiol B, 176 (7): 709-720.
    Rourke B C, Qin A, Haddad F, et al. 2004b. Cloning and sequencing of myosin heavy chain isoform cdnas in golden-mantled ground squirrels: Effects of hibernation on mrna expression. J Appl Physiol, 97 (5): 1985-1991.
    Shavlakadze T, Grounds M. 2006. Of bears, frogs, meat, mice and men: Complexity of factors affecting skeletal muscle mass and fat. Bioessays, 28 (10): 994-1009.
    Soomro M S, Abdul Azeem M, Kaneez F S, et al. 2013. Effects of season (summer winter) on electrical characteristics of skeletal muscle membranes of the spiny-tailed lizard, uromastix hardwickii. Indian J Physiol Pharmacol, 57 (4): 390-398.
    Staples J F, Brown J C. 2008. Mitochondrial metabolism in hibernation and daily torpor: A review. J Comp Physiol B, 178 (7): 811-827.
    Steffen J M, Koebel D A, Musacchia X J, et al. 1991. Morphometric and metabolic indices of disuse in muscles of hibernating ground squirrels. Comp Biochem Physiol B, 99 (4): 815-819.
    Tessier S N, Storey K B. 2010. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation. Mol Cell Biochem, 344 (1-2): 151-162.
    Thomason D B, Biggs R B, Booth F W. 1989. Protein metabolism and beta-myosin heavy-chain mrna in unweighted soleus muscle. Am J Physiol, 257 (2 Pt 2): R300-305.
    Tinker D B, Harlow H J, Beck T D. 1998. Protein use and muscle-fiber changes in free-ranging, hibernating black bears. Physiol Zool, 71 (4): 414-424.
    Vikhliantsev I M, Malyshev S L, Shenkman B S, et al. 2004. The behavior of titin and the proteins of its family from skeletal muscles of ground squirrel (citellus undulatus) during hibernation and rats under conditions of simulated microgravity. Biofizika, 49 (6): 995-1002.
    Volodina A V, Pozdnyakov O M. 2004. Structural and functional rearrangement of muscle spindles in rats under conditions or zero gravity. Bull Exp Biol Med, 137 (1): 92-97.
    Wickler S J, Hoyt D F, van Breukelen F. 1991. Disuse atrophy in the hibernating golden-mantled ground squirrel, spermophilus lateralis. Am J Physiol, 261 (5 Pt 2): R1214-1217.
    Williams D, Kuipers A, Mukai C, et al. 2009. Acclimation during space flight: Effects on human physiology. CMAJ, 180 (13): 1317-1323.
    Xu R, Andres-Mateos E, Mejias R, et al. 2013. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol, 247: 392-401.
    Yang C X, He Y, Gao Y F, et al. 2014. Changes in calpains and calpastatin in the soleus muscle of daurian ground squirrels during hibernation. Comp Biochem Physiol A Mol Integr Physiol, 176: 26-31.
    Zuikova O V, Osipova D A, Vikhliantsev I M, et al. 2005. Myosin light chains of skeletal and cardiac muscles of ground squirrel citillus undulatus in different periods of hibernation. Biofizika, 50 (5): 797-802.
    孙小勇, 高云芳, S王琦, 等. 2012. 达乌尔黄鼠实验室饲养、繁殖及其冬眠阵. 兽类学报, 32 (4): 356-361.
    武雪, 高云芳, 赵雪红, 等. 2012. 川芎嗪对废用状态下大鼠骨骼肌一氧化氮合酶活性及肌纤维内Ca2 浓度的影响. 中华医学杂志, 92 (29): 2075-2077.
    张扬媚, 高云芳. 2012. 废用性肌萎缩的研究进展. 中华物理医学与康复杂志, 34 (7): 550-557.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

党凯,高云芳.2016.冬眠动物骨骼肌生理适应及机制的研究进展.动物学杂志,51(3):497-506.

复制
文章指标
  • 点击次数:2193
  • 下载次数: 2683
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-09-08
  • 最后修改日期:2016-05-04
  • 录用日期:2016-04-25
  • 在线发布日期: 2016-05-24