急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响
作者:
作者单位:

中国水产科学研究院南海水产研究所;上海海洋大学,中国水产科学研究院南海水产研究所,中国水产科学研究院南海水产研究所,中国水产科学研究院南海水产研究所,中国水产科学研究院南海水产研究所,中国水产科学研究院南海水产研究所;上海海洋大学,中国水产科学研究院南海水产研究所;上海海洋大学

基金项目:

中央级公益性科研院所基本科研业务费专项资金项目(No. 2014TS26),广东省自然科学基金项目(No. 2015A030310253),广东省科技计划项目(No. 2016A0303029);


The Effect of Acute and Chronic Hypoxia Stress on Liver Tissue Structure and Oxidation in Juvenile Golden Pompano (Trachinotus ovatus)
Author:
Affiliation:

South China Sea Fisheries Research Institute; Shanghai Ocean University,South China Sea Fisheries Research Institute,South China Sea Fisheries Research Institute,South China Sea Fisheries Research Institute,South China Sea Fisheries Research Institute,South China Sea Fisheries Research Institute; Shanghai Ocean University,South China Sea Fisheries Research Institute; Shanghai Ocean University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    自然海域和养殖水体环境频现低氧,本研究针对卵形鲳鲹(Trachinotus ovatus)不耐低氧的特性,将(31.59 ± 3.01)g(n = 30)的卵形鲳鲹在(23 ± 0.7)℃下进行3、6、12和24 h的急性和14 d的慢性低氧[溶解氧为(1.55 ± 0.20)mg/L]胁迫。运用光学和电子显微技术,比较急、慢性低氧胁迫对卵形鲳鲹肝组织显微和超微结构的影响。通过测定肝组织中的丙二醛(MDA)含量及过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和谷胱甘肽还原酶(GSH)的活性,分析低氧胁迫对卵形鲳鲹肝是否造成氧化损伤。急性低氧胁迫下,卵形鲳鲹肝组织间出现空泡、小叶结构破坏,细胞内线粒体数量减少,出现过氧化物酶体,肝细胞间血窦剧烈扩张。这些病理损伤随胁迫时间延长更趋严重,24 h时甚至出现局部肝细胞融合、坏死,慢性低氧胁迫14 d时,肝细胞局部坏死,细胞膜溶解,细胞核破裂分解,胞质内细胞器不明显,只可分辨粗面内质网,细胞内空泡体积大,细胞结构松散,血窦扩张。急性低氧胁迫下丙二醛(MDA)含量随时间先上升后下降,慢性低氧胁迫14 d时丙二醛(MDA)则显著增加。急性低氧胁迫下超氧化物歧化酶(SOD)和谷胱甘肽还原酶(GSH)上升后恢复,过氧化氢酶(CAT)则持续上调,慢性低氧胁迫下超氧化物歧化酶(SOD)和谷胱甘肽还原酶(GSH)显著上调,过氧化氢酶(CAT)活性下降。结果表明,卵形鲳鲹幼鱼肝组织在低氧胁迫下病理变化明显,氧化损伤严重,且慢性低氧胁迫比急性更甚。

    Abstract:

    Hypoxia occurs in the natural and aquaculture water environment frequently. Golden Pompano (Trachinotus ovatus) is a hypoxia-sensitive fish, so we employed (31.59 ± 3.01g) juvenile golden pompano to study the effect of acute and chronic hypoxia stress on the liver by physiological and histological methods. Individuals were exposed to 3﹣24 h of acute or 14 d of chronic hypoxia stress at room temperature. The histological changes in the liver were observed to analyze the tissue injury. Catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) and malonic dialdehyde (MDA) activities were measured to determine the antioxidant effects in the liver tissue. Data were statistically analyzed. The liver tissue gradually showed vacuoles, expanded blood sinus, and blurred hepatic lobule structure during acute hypoxia. At 24 h acute hypoxia, liver tissue even showed cell fusion and local cell necrosis (Fig. 1e). At 14 d chronic hypoxia, liver tissue showed local cell necrosis and vacuolation inside the cells (Fig. 1f). Cell structure was decentralized, intercellular connection was divided, cell membrane was dissolved, organelles were disrupted, nucleus was decomposed, blood sinus was enlarged, while only rough endoplasmic reticulum was evidently observed (Fig. 2c, d). In acute hypoxia, CAT activity was continuously increased, SOD and GSH activities was recovered after increase (P < 0.05). In chronic hypoxia stress, SOD, GSH activities were significantly increased (P < 0.05), while CAT activity was significantly decreased (P < 0.05) (Fig. 3a﹣c). MDA activity firstly was increased and then recovered in acute hypoxia, but increased significantly (P < 0.05) at 14 d of hypoxia (Fig. 3d). The results show that golden pompano liver tissue structure is seriously damaged and is in severe oxidative stress under hypoxia stress. Hypoxia stress in chronic hypoxia is more serious than that in acute hypoxia.

    参考文献
    Camargo M M P, Martinez C B R. 2007. Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyology, 5(3):327-336.
    Cannito S, Paternostro C, Busletta C, et al. 2014. Hypoxia, hypoxia-inducible factors and fibrogenesis in chronic liver diseases. Histology & Histopathology, 29(1):33-44.
    Gavrilova O, Haluzik M, Matsusue K, et al. 2003. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. The Journal of Biological Chemistry, 278(36): 34268-34276.
    Claudia H, Jeffrey C W. 2009. Morphologic effects of the stress response in fish. Institute for Laboratory Animal Research Journal, 50(4):387-396.
    Gu X L, Xu Z L. 2009. Review on the effects of hypoxia on aquatic animals in estuaries. Marine Fisheries, 31(4):426-437.
    Krivakova P, Cervinkova Z, Lotkova H, et al. 2005. Mitochondria and their role in cell metabolism. Acta Medica (Hradec Kralove) Suppl, 48(2):57-67.
    Li R, Gastroenterology D O. 2009. High-altitude hypoxia and liver injury. World Chinese Journal of Digestology, 17(21):2176-2178.
    Lin H Z, Chen X, Chen S H, et al. 2012. Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus. Aquaculture Research, 44(1):151-156.
    Lushchak V I, Bagnyukova T V. 2006. Effects of different environmental oxygen levels on free radical processes in fish. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 144(3): 283-289.
    Nakanishi K, Tajima F, Nakamura A, et al. 1995. Effects of hypobaric hypoxia on antioxidant enzymes in rats. The Journal of Physiology, 489(3): 869- 876.
    Nordlie F G. 2014. Influences of body mass, temperature, oxygen tension, and salinity on respiratory oxygen consumption of cyprinodontoid fishes of three families. Reviews in Fish Biology & Fisheries, 24(1):269-315.
    Pan C, Chien Y, Wang Y. 2010. The antioxidant capacity response to hypoxia stress during transportation of characins (Hyphessobrycon callistus Boulenger) fed diets supplemented with carotenoids. Aquaculture Research, 41(7): 973-981.
    Paternostro C. 2010. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World Journal of Gastroenterology, 16(3):281.
    Remy Manuel J B, Jonathan Roques J H, Ruud van den Bos GFHV. 2014. Stress in African catfish (Clarias gariepinus) following overland transportation. Fish Physiology and Biochemistry, 40(1):33-44.
    Savransky V, Nanayakkara A, Vivero A, et al. Chronic intermittent hypoxia predisposes to liver injury. Hepatology, 2007, 45(4):1007-1013.
    蔡文超, 区又君, 李加儿, 等. 2012. 卵形鲳鲹免疫器官的早期发育.南方水产科学, 8(5):39-45.
    初晓红. 2009. 斑马鱼肝脏微细结构及胆管系统的研究. 南京: 南京农业大学硕士学位论文.
    李洁. 2011. 限制溶解氧供应对褐牙鲆幼鱼生长的影响及其机制的实验研究. 青岛:中国海洋大学硕士学位论文.
    李卫芬, 张小平, 宋文辉, 等. 2012. 养殖水体中添加芽孢杆菌对草鱼免疫和抗氧化功能的影响, 中国水产科学, 19(6):1027-1033.
    李载权, 周爱儒, 唐朝枢. 2004. 内质网应激反应分子机理研究进展. 中国生物化学与分子生物学报, 20(3): 283-288.
    林卡莉, 钟瑞冲. 2005. 缺氧对小鼠肝细胞的影响. 赣南医学院学报, 25(6) :753-754.
    林丽, 唐朝枢, 袁文俊. 2003. 内质网应激. 生理科学进展, 34(4) :333-335.
    刘旭佳, 黄国强, 李洁, 等. 2014. 梭鱼幼鱼肝脏和肌肉氧化应激指标对溶解氧含量变动的响. 水产科学, 33(6):344-349.
    刘伟, 支兵杰, 战培荣, 等. 2010. 盐度对大麻哈鱼幼鱼血液生化指标及肝组织的影响. 应用生态学报, 21(9):2411-2417.
    马毅, 胡瑞德, 梁英杰, 等. 2006. 大鼠无心跳供体热缺血损伤后供肝组织学与超微结构的动态变化. 中华普通外科杂志, 21(11):788-791.
    区又君, 罗奇, 李加儿. 2011. 卵形鲳鲹碱性磷酸酶和酸性磷酸酶的分布及其低温保存.南方水产科学, 7(2):49-54.
    区又君, 范春燕, 李加儿, 等. 2014. 急性低氧胁迫对卵形鲳鲹选育群体血液生化指标的影响. 海洋学报(中文版), 36(4):126-131.
    苏慧, 区又君, 李加儿, 等. 饥饿对卵形鲳鲹幼鱼不同组织抗氧化能力、Na /K -ATP酶活力和鱼体生化组成的影响.南方水产科学, 2012, 8(6):28-36.
    王刚, 李加儿, 区又君, 等. 2010. 卵形鲳鲹胚胎及早期仔鱼耗氧量的研究. 生态科学, 29(6):518-523.
    王刚, 李加儿, 区又君, 等. 2011. 温度、盐度、pH对卵形鲳鲹幼鱼离体鳃组织耗氧量的影响.南方水产科学, 7(5):37-42.
    王静香, 李加儿, 区又君, 等. 2010. 驼背鲈肝脏结构的光镜和透射电镜观察. 海洋渔业, 32(4):388-394.
    闫玉莲, 谢小军. 2012. 鱼类适应环境温度的代谢补偿及其线粒体水平调节机制. 水生生物学报, 36(3) :532-540.
    尹飞, 孙鹏, 彭士明, 等. 2011. 低盐度胁迫对银鲳幼鱼肝脏抗氧化酶、鳃和肾脏 ATP 酶活力的影响. 应用生态学报, 22(4):1059-1066.
    相似文献
    引证文献
引用本文

陈世喜,王鹏飞,区又君,温久福,李加儿,王雯,谢木娇.2016.急性和慢性低氧胁迫对卵形鲳鲹幼鱼肝组织损伤和抗氧化的影响.动物学杂志,51(6):1049-1058.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-12-28
  • 最后修改日期:2016-08-22
  • 录用日期:2016-06-16
  • 在线发布日期: 2016-11-28