碱度胁迫对尼罗罗非鱼鳃离子细胞形态以及鳃、肾和肠中HCO3-转运因子的影响
作者:
作者单位:

上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室,上海海洋大学农业部淡水水产种质资源重点实验室

基金项目:

国家科技支撑计划项目(No. 2012BAD16B03),现代农业产业技术体系专项(No. CARS-49),水产动物遗传育种中心上海市协同创新中心项目(No. ZF1206);


Effects of Alkalinity on Morphology of Gill Ionocytes and HCO3- Transporters in Gill, Kidney and Intestine of Nile Tilapia (Oreochromis niloticus)
Author:
Affiliation:

Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture, Shanghai Ocean University,Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture, Shanghai Ocean University,Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture, Shanghai Ocean University,Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture, Shanghai Ocean University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用扫描电镜观察了不同碱度(0、2、4 g/L NaHCO3)胁迫对尼罗罗非鱼(Oreochromis niloticus)鳃离子细胞形态变化的影响,并采用免疫组化技术观察了鳃、肾、肠中4个HCO3-转运因子碳酸酐酶(CAⅡ、CAⅣ)、碳酸氢钠协同转运载体(SLC4A4)、Cl-/HCO3-离子交换体(SLC26A6)的阳性反应变化。扫描电镜结果表明,鳃离子细胞分布在鳃小片基部。根据其表面开孔形状和尺寸,可分为Ⅰ型、Ⅱ型、Ⅲ型和Ⅳ型4种亚型,各亚型离子细胞的开孔尺寸随碱度胁迫强度增高呈正比增大,Ⅲ型离子细胞开孔尺寸变化最明显(P < 0.01);离子细胞总数目也随碱度升高而增加,Ⅲ型离子细胞数目上升最为显著(P < 0.01)。免疫组化结果表明,在淡水、碱水组中,CAⅡ、CAⅣ、SLC4A4、SLC26A6在鳃小片基部和肾中均有阳性反应,且随着碱度升高,阳性反应增强,但在肠道中未观察到阳性反应。本研究结果初步表明,尼罗罗非鱼可通过鳃离子细胞形态和数量调节适应碱度变化,鳃和肾为主要应答调节器官。

    Abstract:

    The effect of alkalinity (0, 2 and 4 g/L NaHCO3) stress on morphology of gill ionocytes in Nile Tilapia (Oreochromis niloticus) was studied by scanning electron microscopy, and four HCO3- transporters including carbonic anhydrase (CAⅡ, CAⅣ), Na+/HCO3- cotransporter (SLC4A4), and Cl-/HCO3- exchanger (SLC26A6) in gill, kidney and intestine were also observed by immunohistochemistry. The surface scanning of the gills showed that ionocytes cells were distributed close to the inter-lamellar regions of gill filaments (Fig. 1). According to the apical shape and size, the ionocytes cells could be divided into four subtypes, subtype Ⅰ, subtype Ⅱ, subtype Ⅲ and subtype Ⅳ (Fig. 2). The apical size of each subtype of ionocytes was positively correlated with the alkalinity stress strength, and the size of subtype Ⅲ cells was changed most obviously (P < 0.01) (Table 1); The ionocytes number increased significantly with the increase of alkalinity stress strength, and the number of subtype Ⅲ cells was increased most significantly (P < 0.01) (Table 1). The results of immunohistochemistry showed that CAⅡ, CAⅣ, SLC4A4 and SLC26A6 were expressed in gill and kidney of O. niloticus at fresh water and alkaline water (Fig. 3, Fig. 4). With the increase of alkalinity, the positive reactions became stronger (Table 2). However, no positive reaction was detected in intestinal at fresh water and alkaline water (Fig. 5). This result suggest that O. niloticus may change the quantity and morphological structure of ionocytes to adapt to alkaline environment, and that gill and kidney may play a key role in alkalinity regulation.

    参考文献
    Alper S L, Darman R B, Chernova M N, et al. 2002. The AE gene family of Cl-/ HCO3- exchangers[J]. Journal of Nephrol, 15(S5):S41-S53.
    Chang I C, Lee T H, Yang C H, et al. 2001. Morphology and function of gill mitochondria- rich cells in fish acclimated to different environments[J]. Physiological and Biochemical Zoology, 74(1): 111-119.
    Choi J H, Lee K M, Inokuchi M, et al. 2011. Morphofunctional modifications in gill mitochondria-rich cells of Mozambique tilapia transferred from freshwater to 70% seawater, detected by dual observations of whole-mount immunocytochemistry and scanning electron microscopy[J]. Comparative Biochemistry and Physiology, Part A, 158(1):132-142.
    Dimberg K, Hoglund L B, Knutsson P G, et al. 1981. Histochemical localization of carbonic anhydrase in gill lamellae from young salmon (Salmosalar L) adapted to fresh and salt water[J]. Acta physiologica Scandinavica, 112(2):218-220.
    Hirata T, Kaneko T, Ono T, et al. 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake [J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 53 (5): 1199-1212.
    Hwang P P, Lee T H, Lin L Y. 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms [J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 301(1): R28-R47.
    Inokuchi M, Hiroi J, Watanabe S, et al. 2009. Morphological and functional classification of ion absorbing mitochondria-rich cells in the gills of Mozambique tilapia [J]. Journal of Experimental Biology, 212 (7), 1003-1010.
    Lee T H, Feng S H, Lin C H, et al. 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus[J]. Zoological Science, 20(1): 29-36.
    Lee T H, Hwang P P, Lin H C, et al. 1996. Mitochondria- rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environments[J]. Fish Physiology and Biochemistry, 15(6): 513-523.
    Marshall W S. 2002. Na , Cl-, Ca2 and Zn2 transport by fish gills: retrospective review and prospective synthesis [J]. Journal of Experimental Zoology, 293(3): 264-283.
    Parks S K, Tresguerres M, Goss G G. 2007. Interactions between Na channels and Na /HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na uptake [J]. American Journal of Physiology: Cell Physiology, 61 (2): C935-C944.
    Purkerson J M, Schwartz G J. 2007. The role of carbonic anhydrases in renal physiology [J]. Kidney International, 71 (2): 103-115.
    Rahim S M, Delaunoy J P, Laurent P. 1988. Identification and immunocytochemical localization of two different carbonic ahydrase isoenzymes in teleostean fish erythrocytes and gill epithelia[J]. Histochemistry, 89(5): 451-459.
    Romero M F, Fulton C M, Boron W F. 2004. The SLC4 family of HCO3- transporters [J]. Pflügers Archiv: European Journal of Physiology, 447 (5): 495-509.
    Romero M F, Hediger M A, Boulpaep E L, et al.1997. Expression cloning and characterization of a renal electrogenic Na /HCO3- cotransporter [J]. Nature, 387(6631): 409-413.
    Thammaratsuntorn J. 2015. Biochemical, cellular and molecular responses of Red Tilapia (Oreochromis niloticus♀ × O. mossambicus♂) to salinity and alkalinity stresses[D]. Shanghai: Shanghai Ocean University Doctoral Dissertation, 23-37.
    Wang P J, Lin C H, Hwang L Y, et al. 2009. Differential responses in gills of euryhaline tilapia, Oreochromis mossambicus, to various hyperosmotic shocks [J]. Comparative Biochemistry and Physiology, Part A, 152(4): 544-551.
    Wilson J M, Laurent P, Tufts B L, et al. 2000. NaCl uptake by the branchial epithelium in freshwater teleost fish: An immunological approach to ion-transport protein localization[J]. The Journal of Experimental Biology, 203(15): 2279-2296.
    丁海荣, 洪立洲, 杨智青, 等. 2010. 盐碱地及其生物措施改良研究现状[J]. 现代农业科技, 6: 299-300.
    郭义敏, 刘颖, 陈历明. 2014. 近端肾小管碳酸氢根重吸收的分子机制及代谢性酸中毒[J]. 生理学报, 66 (4):398-414.
    侯俊利, 陈立侨, 庄平, 等. 2006. 不同盐度驯化下施氏鲟幼鱼鳃泌氯细胞结构的变化[J]. 水产学报, 30(3):316-322.
    姜明, 汝少国, 刘晓云. 1998. 不同盐度下蓝非鲫鳃泌氯细胞的结构变化[J]. 青岛海洋大学学报, 28(4): 603-608.
    雷衍之, 董双林, 沈成钢. 1985. 碳酸盐碱度对鱼类毒性作用的研究[J]. 水产学报, 9(2): 171-183.
    么宗利, 李思发, 李学军, 等. 2003. 尼罗罗非鱼和以色列红罗非鱼耐盐驯化初步报告[J]. 上海水产大学学报, 12(2): 97-101.
    王萍, 来琦芳, 么宗利, 等. 2015. 盐碱环境下青海湖裸鲤肠道HCO3?分泌相关基因表达差异[J]. 海洋渔业, 37(4):341-348.
    赵丽慧, 筴金华, 赵金良, 等. 2013. 不同盐、碱度下3品系尼罗罗非鱼幼鱼网箱养殖的生长比较[J]. 南方水产科学, 9(4): 1-7.
    赵丽慧, 赵金良, Thammaratsuntorn Jeerawat, 等. 2014. 盐碱胁迫对尼罗罗非鱼血清渗透压、 离子浓度及离子转运酶基因表达的影响[J]. 水产学报, 38(10): 1696-1704.
    庄青青, 赵金良, 赵丽慧, 等. 2012. 盐度胁迫对尼罗罗非鱼鳃氯细胞调节变化的影响[J]. 生态学杂志, 31(10): 2619-2624.
    章征忠, 张兆琪, 董双林. 1998. 淡水白鲳对盐碱耐受性的初步研究[J]. 青岛海洋大学学报, 28(3): 393-398.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王燕,赵金良,吴俊伟,Thammaratsuntorn Jeerawat,岳蒙蒙,赵岩.2016.碱度胁迫对尼罗罗非鱼鳃离子细胞形态以及鳃、肾和肠中HCO3-转运因子的影响.动物学杂志,51(6):1027-1037.

复制
文章指标
  • 点击次数:2065
  • 下载次数: 2430
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-12-30
  • 最后修改日期:2016-08-23
  • 录用日期:2016-06-16
  • 在线发布日期: 2016-11-28