高山姬鼠下丘脑神经肽表达量的季节性变化
作者:
作者单位:

云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室,昆明市海口林场,云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室

基金项目:

国家自然科学基金项目(No. 31260097;31560126),云南师范大学博士科研启动项目


Seasonal Variations of Hypothalamic Neuropeptide Expression in Chevrier′s Field Mouse (Apodemus chevrieri)
Author:
Affiliation:

Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College,School of Life Sciences of Yunnan Normal University,Kunming Haikou forest farm,Kunming,Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College,School of Life Sciences of Yunnan Normal University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为阐明高山姬鼠(Apodemus chevrieri)下丘脑神经肽表达量在季节性变化条件下对其体重调节的作用,测定了不同季节高山姬鼠的体重、体脂含量、食物摄入量以及血清瘦素浓度和神经肽Y(NPY)、刺鼠相关蛋白(AgRP)、阿片促黑色素原(POMC)和可卡因-安他非明转录调节肽(CART)表达量。采用食物平衡法测定高山姬鼠的食物摄入量,体脂含量用索氏抽提法进行测定,采用实时荧光PCR仪测定下丘脑神经肽表达量。采用单因素方差分析或协方差分析进行检验,相关性采用Pearson相关分析。高山姬鼠的体重和体脂均出现了季节性变化,冬季较低,夏季较高。食物摄入量季节性差异显著,冬季较高,夏季最低。血清瘦素含量也出现了季节性变化,与体脂变化趋势类似,瘦素含量与脂肪含量呈正相关关系。下丘脑神经肽NPY、AgRP、POMC和CART表达量季节性差异显著。食物摄入量与NPY和AgRP负相关,与POMC和CART正相关。以上结果表明,高山姬鼠在季节性变化过程中冬季降低体重、体脂,增加摄入量来维持生存。瘦素通过作用于下丘脑神经肽基因来调节高山姬鼠的体重平衡。

    Abstract:

    The aim of the present study was to examine the effects of hypothalamic neuropeptide genes expression on body mass regulation under seasonal variations in Chevrier′s Field Mouse (Apodemus chevrieri). Body mass, body fat mass, food intake, serum leptin levels and hypothalamic neuropeptide neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opiomelanocortin (POMC) and cocaine and amphetamine regulated transcript peptide (CART) expression were measured in Chevrier′s Field Mouse. Food intake was measured by food equity, body fat was extracted from the dried carcass by ether extraction in a Soxhlet apparatus, hypothalamic neuropeptides genes expression was measured by real-time q-PCR. Data were analyzed using One-way ANOVA or One-way ACNOVA, and associations were judged by Pearson-correlation analysis. The results showed that body mass and body fat mass showed seasonal variations, higher in summer and lower in winter (Fig. 1), and food intake also showed significant seasonal variability, higher in winter and lower in summer (Fig. 1). Serum leptin level also had similar seasonal variation, showing similar trend as body fat mass (Fig. 2), and serum leptin level showed a positive correlation with body fat mass (Fig. 3). Expression of hypothalamic neuropeptide NPY, AgRP, POMC and CART showed significant seasonal differences (Fig. 4). The above results suggest that Chevrier′s Field Mouse reduces body mass, body fat mass, increases food intake to survive in winter under seasonal changes. Leptin may play a regulatory role in body mass by acting on hypothalamic neuropeptide in Chevrier′s Field Mouse.

    参考文献
    [1] Piersma T, Drent J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol., 2003, 18(5): 228-233
    [2] Sabat P, Bozinovic F. Digestive plasticity and the cost of acclimation to dietary chemistry in the omnivorous leaf-eared mouse Phyllotis darwini. J. Comp. Physiol., 2000, 170(5-6): 411-417
    [3] Villarin J J, Schaeffer P J, Markle R A, et al. Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica. Comp. Biochem. Physiol., 2003, 136(3): 621-630.
    [4] Kristan D M, Hammond K A. Effects of three simultaneous demands on glucose transport, resting metabolism and morphology of laboratory mice. J. Comp. Physiol., 2006, 176(2): 139-151
    [5] Naya D E, Bacigalupe L D, Bustamante D M, et al. Dynamic digestive responses to increased energy demands in the leaf-eared mouse (Phyllotis darwini). J. Comp. Physiol., 2005, 175(1): 31-36.
    [6] Smith J G, Christian K, Green B. Physiological ecology of the mangrove-dwelling varanid Varanus indicus. Physiol. Biochem. Zool., 2008, 81(5): 561-569
    [7] Dawson W R. Plasticity in avian responses to thermal challenges—an essay in honor of Jacob Marder. Israel J Zool, 2003 49(2): 95-109
    [8] Merritt J F, Zegers D A, Rose L R. Seasonal thermogenesis of southern flying squirrels (Glaucomys volans). J Mammal, 2001, 82(1): 51-64.
    [9] Lovegrove B G. Seasonal thermoregulatory responses in mammals. J Comp Physiol, 2005, 175(4): 231-247.
    [10] Silva J E. Thermogenic mechanisms and their hormonal regulation. Physiological Reviews, 2006, 86(2): 435-464.
    [11] Barb C R, Kraeling R R. Role of leptin in the regulation of gonadotropin secretion in farm animals. Anim. Reprod. Sci., 2004, 82(1):155-167.
    [12] Friedman J M, Halaas JL. Leptin and the regulation of body weight in mammals. Nature, 1998, 395(6704): 763-770.
    [13] Ruth B S. Direct and indirect effects ofSleptinSon adipocyteSmetabolism. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,S2014,S1842(3): 414-423
    [14] Tung Y C, Piper S J, Yeung D, et al. A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in pomc null mice. Endocrinology, 2006,147(12): 5940–5947
    [15] Xiao X Q, Grove K L, Lau S Y, et al. Deoxyribonucleic acid microarray analysis of gene expression pattern in the arcuate nucleus/ventromedial nucleus of hypothalamus during lactation. Endocrinology, 2005, 146(2): 4391-4398.
    [16] Ribelayga C, Pévet P, Simonneaux V. Possible involvement ofSneuropeptide YSin theSseasonalScontrol of hydroxyindole-O-methyltransferase activity in the pineal gland of the European hamster (Cricetus cricetus). Brain Research,S1998,S801(1–2): 137-142.
    [17] Kitamura T, Feng Y, Kitamura YI, et al. Forkhead protein mediates AgRP depenent effects of leptin on food intake. Nat. Med., 2006, 12(5): 534-540.
    [18] Endo D, Park M K. Molecular characterization of the leopard geckoSPOMCSgene and expressionalSchangeSin the testis by acclimation to low temperature and with a short photoperiod. General and Comparative Endocrinology,S2004,S138(1): 70-77.
    [19] Khorooshi R, Helwig M, Werckenthin A, et al. SeasonalSregulation of cocaine- and amphetamine-regulated transcript in the arcuate nucleus of Djungarian hamster (Phodopus sungorus). General and Comparative Endocrinology,S2008,S157(2): 142-147.
    [20] Zhu W L, Jia T, Lian X, et al. Evaporative water loss and energy metabolic in two small mammals, voles (Eothenomys miletus) and mice (Apodemus chevrieri) in Hengduan mountains region. Journal of Thermal Biology, 2008, 33(6):324-331.
    [21] Zhu W L, Wang B, Cai J H, et al. Thermogenesis, energy intake and serum leptin in Apodemus chevrieri in Hengduan Mountains region during cold acclimation. Journal of Thermal Biology, 2011, 36(3): 181-186.
    [22] Zhu W L, Yang S C, Zhang L, et al. Seasonal variations of body mass, thermogenesis and digestive tract morphology in Apodemus chevrieri in Hengduan mountain region. Animal Biology, 2012, 62: 463-478.
    [23] Zhu W L, Zhan L, Wang Z K. The thermogenic and metabolic responses to photoperiod manipulations in Apodemus chevrieri. Animal Biology. 2013, 63(2): 241-255.
    [24] Zhu W L, Mu Y, Zhang H, et al. Effects of food restriction on body mass, thermogenesis and serum leptin level in Apodemus chevrieri (Mammalia: Rodentia: Muridae). Italian Journal ofSZoology, 2013, 80(3): 337-344.
    [25] Zhu W L, Mu Y, Liu J H, et al. Energy requirements during lactation in female Apodemus chevrieri (Mammalia: Rodentia: Muridae) in Hengduan mountain region. Italian JournalSofSZoology,S2015,S82(2): 165-171.
    [26] Zhang L, Yang F, Huang C M, et al. The role of photoperiod on the expression of hypothalamic genes regulating appetite in Chevrier's field mouse (Apodemus chevrieri). Animal Biology, 2015, 65(1): 45-56.
    [27] Bush N G, Brown M, Downs C T. Seasonal effects on thermoregulatory responses of the Rock Kestrel, Falco rupicolis. J Therm Biol, 2008, 33(7): 404-412.
    [28] Steinlechner S, Heldmaier G, Becker H. The seasonal cycle of body weight in the Djungarian hamster: photoperiod control and the influence of starvation and melatonin. Oecologia, 1983, 60(3): 401-405.
    [29] Mercer J G. Regulation of appetite and body weight in seasonal mammals. Comp. Biochem. Physiol., 1998, 119(3): 295-303.
    [30] Michael W S, Stephen C W, Danlel P, et al. Central nervous system control of food intake. Nature, 2000, 404(7109): 661-671
    [31] Coleman D L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia, 1978, 14(3): 141-148
    [32] Zhang X Y, Wang DH. Energy metabolic, thermogenesis and body mass regulation in Brandt’s voles (Lasiopodomys brandtii) during cold acclimation and rewarming. Horm Behav, 2006, 50(1): 61-69
    [33] Bozinovic F, Bacigalupe L D, Vasquez R A, et al. Cost of living in free-ranging degus (Octodondegus): seasonal dynamics of energy expenditure. Comp Biochem Physiol, 2004, 137(3): 597-604.
    [34] Lakhdar-Ghazal N, Oukouchoud R, Pévet P. SeasonalSvariation in NPY immunoreactivity in the suprachiasmatic nucleus of the jerboa (Jaculus orientalis), a desert hibernator. Neuroscience Letters,S1995,S193(1): 49-52.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱万龙,陈金龙,王政昆.2016.高山姬鼠下丘脑神经肽表达量的季节性变化.动物学杂志,51(5):817-825.

复制
文章指标
  • 点击次数:1765
  • 下载次数: 1920
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-01-06
  • 最后修改日期:2016-08-16
  • 录用日期:2016-06-16
  • 在线发布日期: 2016-09-22