基于线粒体Cyt b序列对新疆额尔齐斯河贝加尔雅罗鱼遗传结构的分析
作者:
作者单位:

新疆维吾尔自治区水产科学研究所,新疆维吾尔自治区水产科学研究所,新疆维吾尔自治区水产科学研究所,新疆维吾尔自治区水产科学研究所,华中农业大学水产学院

基金项目:

新疆维吾尔自治区自然科学基金项目(No. 2012211B57),国家科技基础性工作专项(No. 2012FY112700),国家水产种质资源平台项目(No. 2016DKA30470)


Population Genetic Structure of Siberian Dace (Leuciscus leuciscus baicalensis) in Irtysh River China Based on the Cyt b Gene Sequences
Author:
Affiliation:

Xinjiang Fisheries Research Institute,Xinjiang Fisheries Research Institute,Fisheries College of Huazhong Agricultural University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用线粒体Cyt b基因序列对额尔齐斯河流域的青河(QH,18尾)、哈巴河(HBH,21尾)、185团(185T,18尾)和乌伦古湖(WLG,20尾)4个贝加尔雅罗鱼(Leuciscus leuciscus baicalensis)群体进行了遗传结构的比较分析。在片段长度为1 109 bp的同源序列上,77尾个体共检测到54种单倍型,其中共享单倍型7个,总单倍型多样性指数(Hd)、总核苷酸多样性指数(π)和平均核苷酸差异数(K)分别为0.981 9、0.008 21和9.091,且185团群体单倍型多样性指数和核苷酸多样性指数最高、青河群体最低。4个群体间遗传距离在0.006 ~ 0.011之间,基于Kimura 2- parameter法构建的单倍型邻接关系树分为3支,群体间遗传关系和地理分布没有明显的相关性。AMOVA分析显示额尔齐斯河流域贝加尔雅罗鱼遗传差异极显著(P < 0.01)。青河和乌伦古湖群体基因流(Nm)远高于其他群体间,推测乌伦古河或许是二者进行基因交流的渠道。尽管单倍型核苷酸不配对分布呈双峰,但偏差平方和(Q)与粗糙指数(r)均不显著(P > 0.05),且Tajima′s D和Fu′s Fs检验也均显著偏离中性,结合群体呈现高单倍型多样性和低核苷酸多样性的特点,推测贝加尔雅罗鱼经历了群体扩张事件。参考已校正的鲤科鱼类Cyt b基因0.76%/Ma的进化速率,估算群体扩张的时间大约在1.97 Ma前的更新世中晚期,推测该时期阿尔泰山地区发生的冰川作用和频繁的古地震造成的地理隔离和融合可能是贝加尔雅罗鱼发生群体扩张的重要原因。

    Abstract:

    The genetic structures of four Siberian Dace (Leuciscus leuciscus baicalensis) populations (Qinghe QH, Haba River HBH, 185 Regiment 185T and Ulungur Lake WLG, Fig. 1) from Irtysh River were analyzed by mtDNA Cyt b gene marker. A total of 1 109 bp sequences were obtained and 54 haplotypes were found among 77 individuals including 7 shared haplotypes. Total haplotype diversity (Hd), total nucleotide diversity (π) and average nucleotide difference (K) were 0.981 9, 0.008 21 and 9.091 (Table 1), respectively. The haplotype and nucleotide diversity of 185T were the highest, whereas those of QH were the lowest. The genetic distance among four populations ranged from 0.006 to 0.011. Neighborhood-joining (NJ) phylogenetic tree of all haplotypes based on Kimura 2- parameter method was divided to three branches (Fig. 2). There was no significant correlation between genetic relationship and geographical distance. AMOVA analysis showed differences among Siberian Dace populations were extremely significant (P < 0.01, Table 3). The gene flow (Nm) between QH and WLG was much higher than other populations, indicating Ulungur River was the genetic communication channel between them (Table 2). Although nucleotide mismatch distribution was bimodal, both sum of squared deviation (Q) and raggedness index (r) were not significant (P > 0.05, Fig. 3). Meanwhile, Tajima′s D and Fu′s Fs neutral test gave positive values, in combination with high haplotype diversity and low nucleotide diversity, authors still considered Siberian Dace experienced population expansion. Applying 0.76% divergence rate of Cyt b gene sequence in Cyprinid fish, the divergence of Siberian Dace occurred about 1.97 Ma years ago during the middle-late Pleistocene. It was supposed that geographical isolation and fusion caused by glaciation and frequent paleo-earthquake in Altai region were the important reasons for population expansion.

    参考文献
    Avise J C. 1994. Molecular Markers, Natural History and Evolution. NewYork: Chapman and Hall.
    Bruno M, Casciotta J R, Almirón A E, et al. 2015. Quaternary refugia and secondary contact in the southern boundary of the Brazilian subregion: comparative phylogeography of freshwater fish. Vertebrate zoology, 65(1): 45-55.
    Costedoat C, Pech N, Salducci M D, et al. 2005. Evolution of mosaic hybrid zone between invasive and endemic species of Cyprinidae through space and time. Biological Journal of the Linnean Society, 85(2): 135-155.
    Dugarov1 Z N, Batueva M D, Pronina S V. 2011. Hyperparasitism by Myxobilatus paragasterostei Zaika, 1963 (Myxozoa: Myxosporea) in Phyllodistomum folium (Olfers, 1926) (Trematoda: Gorgoderidae), a parasite of the Siberian dace Leuciscus leuciscus baicalensis. Bull. Eur. Ass. Fish Pathol, 31(1): 31-35.
    Excoffier L, Lischer H E. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 10(3): 564-567.
    Grant W, Bowen B. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89(5): 415-426.
    Hamrick J L. 1987. Gene flow and distribution of genetic variation in plant populations. In: Urbanska, K. (Ed) DifferentiationSinShigher plants. New York: Academic Press, 53-67.
    Harpending H C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66(4): 591-600.
    Hu S F, Niu J G, Xie P, et al. 2014. The complete mitochondrial genome of Leuciscus leuciscus baicalensis (Cypriniformes: Cyprinidae). Mitochondrial DNA, 26(5): 751-752.
    Luhariya R K, Lal K K, Singh R K, et al. 2014. Genealogy and phylogeography of Cyprinid fish Labeo rohita (Hamilton, 1822) inferred from ATPase 6 and 8 mitochondrial DNA gene analysis. Current Zoology, 60(4): 460-471.
    Maniatis T, Fritsch E F, Sambrook J. 1982. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.
    Mazur O E, Pronin N M, Garmaeva S G.. 2008. Heavy Metal Content and Response of the Blood System of Siberian Dace Leuciscus leuciscus baicalensis (Cypriniformes, Cyprinidae) under Anthropogenic Impact. Journal of Ichthyology, 48(6): 469-475.
    Rozas J. 2009. DNA Sequence Polymorphism Analysis using DnaSP. Bioinformatics for DNA Sequence Analysis, Methods in Molecular Biology.SNew Jersey: Humana Press, 337-350.
    Shaklee J B, Tamaru C S, Waples R W. 1982. Speciation and evolution of marine fishes studies by electrophoresis analysis of proteins. Pacific Scientific, 6: 141-157.
    Slatkin M. 1987. Gene flow and geographic structure of natural population. Science, 236:787-792.
    Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3): 585-595.
    Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. MolecularSBiologySand Evolution, 30(12): 2725-2729.
    Yu D, Chen M, Tang Q Y, et al. 2014. Geological events and Pliocene climate fluctuations explain phylogeographical pattern of the cold water fish Rhynchocypris oxycephalus (Cypriniformes: Cyprinidae) in China. BMC Evolutionary Biology, 14: 225-237.
    Vrijenhoek R C. 1994. Genetic diversity and Fitness in Small Populations. Conservation Genetics, 68: 37-53.
    Wright S. 1931. Evolution of Mendelian populations. Genetics, 16: 91-176.
    Wright S. 1951. The genetical structure of population. Ann Eugen,S15(4): 323-54.
    Wright S. 1978. Evolution and the genetics of populations. Chicago: University of Chicago Press.
    XiaoSW,SZhangSY,SLiuSH. 2001. Molecular systematics of XenocyprinaeS(Teleostei:SCyprinidae): taxonomy,SbiogeographySand coevolutionSofSaSspecialSgroupSrestrictedSinSEastSAsia. Molecular PhylogeneticsSandSEvolution, 18(2):S163-173.
    Zardoya R, Doadrio I. 1999. Molecular Evidence on the Evolutionary and Biogeographical Patterns of European Cyprinids. Molecular Evolution. 49(2): 227-237.
    Zhigilevaa O N, Ozhirel’ev V V, Brol’ I S, et al. 2010. Populational Structure of Three Fish Species (Cypriniformes: Cyprinidae) Living in Rivers of the Ob-Irtysh Basin, by the Data of Isoenzyme Analysis. Journal of Ichthyology, 50(9): 778-787.
    柏美祥. 1996. 额尔齐斯活动断裂带. 新疆地质,14(2):127-134.
    常宏,安芷生,强小科,等. 2005. 河流阶地的形成及其对构造与气候的意义. 海洋地质动态, 21(2):8-11.
    崔之久,易朝路,严竟浮. 1992. 新疆阿尔泰山哈纳斯河流域及其邻域第四纪冰川作用. 冰川冻土,14(4):342-351.
    郭新红,刘少军,刘巧,等. 2004. 鱼类线粒体DNA研究新进展. 遗传学报, 31(9):983-1000.
    郭焱,张人铭,李红. 2003a. 额尔齐斯河土著鱼类资源衰退原因与保护措施. 干旱区研究,20(2):152-155.
    郭焱,吐尔逊,蔡林钢,等. 2003b. 赛里木湖贝加尔雅罗鱼Leuciscus leuciscus baicalensis生长研究. 新疆大学学报(自然科学版),20(3):272-276.
    郭焱,张人铭,蔡林钢,等. 2012. 新疆鱼类志. 乌鲁木齐:新疆科学技术出版社.
    胡思帆. 2014. 新疆额尔齐斯河贝加尔雅罗鱼线粒体基因组分析和遗传多样性研究. 武汉:华中农业大学水产学院.
    霍堂斌,马波,唐富江,等. 2008. 新疆3种雅罗鱼生长模型的比较研究. 水产学杂志,21(2):8-14.
    李尽梅. 2006. 我国额尔齐斯河流域鱼类资源衰退的原因与对策. 中国水产,9:76-78.
    李疆,加帕尔,卡德尔. 1981. 乌伦古河径流及布伦托海湖水位多年变化的初步分析. 干旱区地理:4(1):10-18.
    刘晓辰,卓然江,殷建国,等. 2015. 新疆阿勒泰地区贝加尔雅罗鱼池养殖试验. 科学养鱼,4:35.
    潘宝平,卜文俊. 2005. 线粒体基因组的遗传与进化研究进展. 生物学通报,40(8):1-3.
    曲若竹,侯林,吕红丽,等. 2004. 群体遗传结构中的基因流. 遗传,26(3):377-382.
    任慕莲,郭焱,张人铭,等. 2002. 中国额尔齐斯河鱼类资源及渔业. 乌鲁木齐:新疆科技卫生出版社.
    夏庆一. 1989. “引额济海”成效卓著. 干早环境监测,3(2):11.
    向井辉美. 1984. 群体遗传学. 长春:吉林科学技术出版社.
    严钦尚,夏训诚. 1962. 新疆额尔齐斯河与乌伦古河流域地貌发育. 地理学报,28(4):257-272.
    张丽萍. 1997. 贝加尔雅罗鱼核型比较. 干旱区研究,14(1):80-83.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨天燕,孟玮,海萨,牛建功,周琼.2017.基于线粒体Cyt b序列对新疆额尔齐斯河贝加尔雅罗鱼遗传结构的分析.动物学杂志,52(2):304-313.

复制
文章指标
  • 点击次数:2155
  • 下载次数: 2428
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-01-18
  • 最后修改日期:2017-02-16
  • 录用日期:2017-02-13
  • 在线发布日期: 2017-03-09