两种福寿螺与中国圆田螺齿舌的形态学特征比较
作者:
作者单位:

南京师范大学生命科学学院,江苏第二师范学院生命科学与化学化工学院,南京师范大学生命科学学院,江苏第二师范学院生命科学与化学化工学院,江苏第二师范学院生命科学与化学化工学院,环境保护部南京环境科学研究所,江苏第二师范学院生命科学与化学化工学院,环境保护部南京环境科学研究所,环境保护部南京环境科学研究所

基金项目:

国家自然科学基金项目(No. 31100274),江苏省自然科学基金项目(No. BK20131087),江苏省高校自然科学基金项目(No. 15KJB180004);


Comparative Study on Morphology of Radula of Pomacea canaliculata, P. maculata and Cipangopaludina chinensis
Author:
Affiliation:

College of Life Sciences, Nanjing Normal University,College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University,College of Life Sciences, Nanjing Normal University,College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University,College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University,Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection,College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University,Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection,Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    齿舌作为软体动物独特的摄食器官,是软体动物门重要的分类特征。利用扫描电镜对入侵物种福寿螺Pomacea canaliculata、P. maculata和本地物种中国圆田螺(Cipangopaludina chinensis)的齿舌形态进行了比较观察。两种福寿螺和中国圆田螺齿式均为2?1?1?1?2。两种福寿螺齿舌的差异主要体现在中央齿的第一突起,P. canaliculata中央齿第一突起宽而短,不如P. maculata锋利。P. canaliculata与P. maculata第一突起长与中央齿宽以及第一突起宽与中央齿宽的比值均具有显著差异。两种福寿螺与中国圆田螺齿舌的中央齿、侧齿、缘齿,不论是从形态还是数量上都明显不同。两种福寿螺中央齿第一突起大而尖,呈倒三角形,两侧对称排列3个小齿;中国圆田螺的中央齿第一突起短而宽,呈方形,两侧对称排列4个小齿。两种福寿螺的侧齿大突起内侧有1个小而尖的小齿,大突起外侧另有2个小齿;中国圆田螺侧齿上缘中间大突起外侧有3个小齿,呈锯齿状。两种福寿螺的内缘齿和外缘齿相似,缘齿上缘的中间尖齿尖锐,旁边再形成一小齿;中国圆田螺内缘齿上缘的中间尖齿突出,外缘齿基部细长,上缘有小的尖齿8 ~ 10个,呈梳状。两种福寿螺与中国圆田螺的第一突起宽与中央齿宽之比、第一突起长与中央齿宽之比、第二突起宽与中央齿宽之比、第二突起长与中央齿宽之比均差异显著。食性不同可能是造成种间齿舌结构差异的原因之一。

    Abstract:

    Radula as a unique feeding organ is a useful morphological character to identify molluscs. The scanning electron microscopy (SEM) was used for comparison of radula′s morphology of two invasive species Pomacea canaliculata, P. maculata and one native species Cipangopaludina chinensis. The radulae were extracted from four individuals of each apple snails and three individuals of C. chinensis. Surrounding tissue on the radula was removed manually and then placed in 10% sodium hydroxide for approximately 24 hours to remove any remaining tissue. The radula was then dried briefly and fixed on the copper plate and coated with gold. A series of parameters of the central teeth (Fig. 1) from the three species were measured by the software SmileView. The data were analyzed by Statistica 10.0 software package. Results suggested that the radular formula of the three species was 2?1?1?1?2, including one central tooth, one lateral tooth and other two marginal teeth on each side (Fig. 3a, e, i). The main discrepancy between the two apple snails was the central teeth. The first cusp of the central tooth of P. canaliculata was shorter and wider, not as sharp as that of P. maculata (Fig. 3b, f). There were significant differences in the ratio of the length of the first cusp/the width of the central tooth, and the width of the first cusp/the width of the central tooth between the two apple snails (P < 0.001, Table 2). The morphology of lateral tooth and marginal tooth for the two apple snails were similar (Table 1). However, the number and morphology of the central teeth, lateral teeth and marginal teeth were different among these three species (Table 1, Fig. 3). The first cusp of the central tooth was triangle, and three small cusps arranged symmetrically on both sides between the two apple snails. The species of C. chinensis had a short, broad, square cusp of the central tooth, bounded by four short, pointed denticles on each side. There were one small sharp cusp inside the big cusp of lateral teeth and two small cusps outside of that in the two apple snails. Three small serrated cusps were observed beside the big cusp of lateral teeth in C. chinensis. The inner and outer marginal teeth were similar in the two apple snails. The central cusp of the marginal tooth was sharp, with a small cusp near it. The central cusp of the inner marginal tooth was extruded in C. chinensis, and the outer marginal tooth had 8﹣10 small pectinate cusps. There were significant differences in the ratio of the width of the first cusp, the length of the first cusp, the length of the second cusp, as well as the width of the second cusp to the width of the central teeth between apple snails and C. chinensis (Table 2). The morphology of the radula is related to diet in order to adapt a wide variety of foods. The two apple snails were polyphagous, mainly feeding on vegetal (primarily young rice-crops) and animal matter, while C. chinensis ate microorganisms in the soil and humus phytoplankton in the water. Different feeding strategies could be one of the factors influencing interspecific differences in radula.

    参考文献
    Anistratenko V V, Ryabceva Y S, Degtyarenko E V. 2013. Morphological traits of the radula in viviparidae (Mollusca, caenogastropoda) as a master key to discrimination of closely related species. Vestnik zoologii, 47(2): 149–160.
    Carlsson N, Bronmark C, Hansson L A. 2004. Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology, 85(6): 1575–1580.
    Carlsson N O L, Brnmark C. 2006. Size-dependent effects of an invasive herbivorous snail (Pomacea canaliculata) on macrophytes and periphyton in Asian wetlands. Freshwater Biology, 51(4): 695–704.
    Cazzaniga N J. 2002. Old species and new concepts in the taxonomy of Pomacea (Gastropoda: Ampullariidae). Biocell, 26(1): 71–81.
    Claremont M, Vermeij G J, Williams S T, et al. 2013. Global phylogeny and new classification of the Rapaninae (Gastropoda: Muricidae), dominant molluscan predators on tropical rocky seashores. Molecular Phylogenetics and Evolution, 6(1): 91–102.
    Franklin J B, Fernando S A, Chalke B A. 2007. Radular morphology of Conus (Gastropoda: Caenogastropoda: Conidae) from India. Molluscan Research, 27(3): 111–122.
    Fujioka Y. 1985. Seasonal aberrant radular formation in Thais bronni (Dunker) and T. clavigera (Küster) (Gastropoda: Muricidae) thaid. Journal of experimental marine biology and ecology, 90(1): 43–54.
    Hayes K A, Joshi R C, Thiengo S C, et al. 2008. Out of South America: multiple origins of non-native apple snails in Asia. Diversity and Distributions, 14(4): 701–712.
    Hayes K A, Cowie R H, Thiengo S C, et al. 2009. A global phylogeny of apple snails: Gondwanan origin, generic relationships and the influence of outgroup choice (Caenogastropoda: Ampullariidae). Biological Journal of the Linnean Society, 98(98): 61–76.
    Hayes K A, Cowie R H, Thiengo S C, et al. 2012. Comparing apples to apples: clarifying the identities of two highly invasive Neotropical Ampullariidae (Caenogastropoda). Zoological Journal of Linnean Society, 166(4): 723–753.
    Hodgson A. 1987. Invertebrate Zoology. 5th ed. South African Journal of Zoology, 22(4): 327–327.
    Kantor Y I, Taylor J D. 2000. Formation of marginal radular teeth in Conoidea (Neogastropoda) and the evolution of the hypodermic envenomation mechanism. Journal of Zoology, 252(2): 251–262.
    Kongim B, Sutcharit C, Naggs F, et al. 2013. Taxonomic revision of the Elephant Pupinid snail genus Pollicaria Gould, 1856 (Prosobranchia, Pupinidae). ZooKeys, 287(287): 19–40.
    Kwong K L, Dudgeon D, Wong P K, et al. 2010. Secondary production and diet of an invasive snail in freshwater wetlands: implications for resource utilization and competition. Biological Invasions, 12(5): 1153–1164.
    Lowe S, Browne M, Boudjelas S, et al. 2000. 100 of the world’s worst invasive alien species: a selection from
    the global invasive species database. Auckland: The Invasive Species Specialists Group of the Species Survival Commission of the World Conservation Union, 1–12.
    Luque G M, Bellard C, Bertelsmeier C, et al. 2014. 100 of the world's worst invasive alien species. Biological Invasions, 16(5): 981–985.
    Lv S, Zhang Y, Liu H X, et al. 2013. Phylogenetic evidence for multiple and secondary introductions of invasive snails: Pomacea species in the People's Republic of China. Diversity and Distributions, 19(2): 147–156.
    Martín S M, Negrete L H. 2007. Radular ultrastructure of South American Ampullariidae (Gastropoda: Prosobranchia). Brazilian Journal of Biology, 67(4): 721–726.
    Morrison W E, Hay M E. 2011. Feeding and growth of native, invasive and non-invasive alien apple snails (Ampullariidae) in the United States: Invasives eat more and grow more. Biological Invasions, 13(4): 945–955.
    Mu X, Hou G, Song H, et al. 2015. Transcriptome analysis between invasive Pomacea canaliculata and indigenous Cipangopaludina cahayensis reveals genomic divergence and diagnostic microsatellite/SSR markers. BMC Genetics, 16(1): 1–13.
    Rawlings T A, Hayes K A, Cowie R H, et al. 2007. The identity, distribution and impacts of non-native apple snails in the Continental United States. BMC Evolutionary Biology, 7(4): 97.
    Seuffert M E, Burela S, Martín P R. 2010. Influence of water temperature on the activity of the freshwater snail Pomacea canaliculata (Caenogastropoda: Ampullariidae) at its southernmost limit (Southern Pampas, Argentina). Journal of Thermal Biology, 35(2): 77–84.
    Stella C, Paul P, Ragunathan C. 2015. Describing the Radular morphology by using SEM in Muricanthuskuesterianus (Tapparone-canefri1875) Family: Muricidae, from Palk Bay-South East Coast of India. Sustainability, Agriculture, Food and Environmental Research, 3(1): 26–33.
    Siriboon T, Sutcharit C, Naggs F, et al. 2013. Three new species of the carnivorous snail genus Perrottetia Kobelt, 1905 from Thailand (Pulmonata, Streptaxidae), ZooKeys, 252(287): 41–57.
    蔡如星. 1991. 浙江动物志----软体动物. 杭州: 浙江科学技术出版社, 116–117.
    蔡英亚, 张英, 魏若飞. 1995. 贝类学概论. 2版. 上海科学技术出版社, 50–53.
    陈德牛, 高家祥. 1983. 略谈软体动物的齿舌. 生物学通报, 6: 25–26.
    陈元晓, 陈英杰, 张闻, 等. 2009. 云南省4种淡水贝类的营养成分和经济价值. 四川解剖学杂志, 17(2): 28–30.
    郭靖, 章家恩. 2014. 福寿螺入侵机制的研究进展. 生态学杂志, 33(3): 806–815.
    郭撅华. 1983. 贝类学论文集. 北京: 科学出版社, 81–86.
    黄富友, 苏小平, 赵书贤, 等. 2004. 田螺池塘养殖技术. 中国水产, 2:47–49.
    黄建荣, 丁少雄, 王德祥, 等. 2013. 中国沿岸13荔枝螺的齿舌形态分析. 海洋科学, 37(8): 72–77.
    李进寿, 周时强, 柯才焕. 2004. 福建沿海多板类齿舌形态的比较研究. 厦门大学学报: 自然科学版, 43(4): 581–584.
    李映溪, 陆敏, 王春华, 等. 1990. 大连海产腹足类齿舌的扫描电镜观察. 辽宁师范大学学报: 自然科学版, (1): 43–50.
    刘彬. 1996. 4种园田螺的分类指标研究. 西南农业大学学报, 18(5): 496–499.
    刘月英, 张文珍, 王跃先, 等. 1979. 中国经济动物志----淡水软体动物. 北京:科学出版社, 49–62.
    罗明珠, 章家恩, 胡九龙, 等. 2015a. 福寿螺和田螺的纤维素酶反应体系对不同pH和温度的响应. 华南农业大学学报, 36(4): 55–58.
    罗明珠, 章家恩, 胡九龙, 等. 2015b. 福寿螺和田螺消化酶活性比较. 生态学报, 35(11): 3580–3587.
    欧阳珊, 吴小平. 2001. 小型腹足类齿舌的扫描电镜观察. 动物学杂志, 36(5): 2–3.
    潘英, 李斌, 李广林. 2010. 我国角螺属不同群体齿舌形态的比较. 热带海洋学报, 29(6): 125–129.
    孙志坚, 曾清香, 张波, 等. 2011. 中国不同品系福寿螺主要形态比较. 中国人兽共患病学报, 27(3):184–189.
    巫文隆. 1992. 新腹足目贝类类缘关系研究—齿舌的分析结果. 电子显微学报, 331–332.
    王明宝, 陈斌. 2012. 中华圆田螺特征特性及池塘人工养殖技术. 现代农业科技, (9): 343–343.
    王志高, 谭济才, 刘军, 等. 2009. 福寿螺综合防治研究进展. 中国农学通报, 25(12): 201–205.
    张爱良. 2004. 田螺的利用及养殖要点. 特种经济动植物, 7(7) :12–12.
    周晓农, 张仪, 吕山. 2009. “福寿螺”学名中译名的探讨. 中国寄生虫学与寄生虫病杂志, 27(1): 62–64.
    引证文献
引用本文

叶苗,樊天骐,陈炼,陈燏,朱善良,吴军,陈干,徐海根,刘燕.2017.两种福寿螺与中国圆田螺齿舌的形态学特征比较.动物学杂志,52(1):97-107.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-05-03
  • 最后修改日期:2016-12-23
  • 录用日期:2016-09-06
  • 在线发布日期: 2017-01-12