基于MaxEnt模型预测海南岛海南臭蛙的潜在地理分布
作者:
作者单位:

① 中国林业科学研究院湿地研究所 北京 100091;,② 海南热带海洋学院热带生物与农学院 三亚 572000;,② 海南热带海洋学院热带生物与农学院 三亚 572000;,① 中国林业科学研究院湿地研究所 北京 100091;,③ 海南鹦哥岭国家级自然保护区 白沙 572800;,③ 海南鹦哥岭国家级自然保护区 白沙 572800;,④ 海南尖峰岭林业局 乐东县 572542;,⑤ 海南黎母山省级自然保护区 琼中县 572934;,⑥ 海南五指山国家级自然保护区 五指山市 572299

基金项目:

全国陆生野生动物第二次调查专项;


Predicting the Potential Geographical Distribution of Hainan Odorous Frog (Odorrana hainanensis) in Hainan Province by MaxEnt
Author:
Affiliation:

① Institute of Wetland Research,Chinese Academy of Forestry;,② College of Tropical Biology and Agronomy, Hainan Tropical Ocean University, Sanya 572000;,② College of Tropical Biology and Agronomy, Hainan Tropical Ocean University, Sanya 572000;,① Institute of Wetland Research,Chinese Academy of Forestry;,③ Hainan Yinggeling National Nature Reserve, Baisha County 572800;,③ Hainan Yinggeling National Nature Reserve, Baisha County 572800;,④ Hainan Jianfengling Forestry Bureau, Ledong County 572542;,⑤ Hainan Limushan Provincial Nature Reserve, Qiongzhong County 572934;,⑥ Hainan Wuzhishan National Nature Reserve, Wuzhishan 572299;

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    生境分析与预测是受威胁物种有效保护的基础。本研究通过ArcGIS技术平台,利用MaxEnt模型,结合野外调查获得的海南臭蛙(Odorrana hainanensis)66个分布点数据和17个30 m × 30 m分辨率的环境变量数据,对该物种在海南岛内的潜在分布区进行预测,并分析其与环境因子之间的关系。结果显示,海南臭蛙的潜在分布区主要位于海拔200 ~ 1 200 m的地区,最适宜的海拔范围是600 ~ 1 000 m,总分布面积约2 179 km2。海南臭蛙空间分布具有不连续性,其分布区分为三个斑块,尖峰岭所在地为斑块Ⅰ,霸王岭、鹦哥岭和黎母山所在地为斑块Ⅱ,五指山和吊罗山所在地为斑块Ⅲ。适宜生境分析显示,斑块Ⅰ适宜生境面积为218.4 km2,主要分布在尖峰岭中部的三分区、五分区和南部的南崖;斑块Ⅱ适宜生境面积为963.5 km2,主要分布在霸王岭北部的牙琼、南美岭以及鹦哥岭东部的鹦哥嘴、什寒、秀寨岭和黎母山主峰西侧的四分场;斑块Ⅲ适宜生境面积为997.1 km2,主要分布在五指山西部的那罗岭、南部的好定岭和吊罗山中部的度假村、白水岭以及研究区东部的牛上岭。环境变量分析显示,海拔是影响海南臭蛙分布的最主要环境因子,其次是坡度、距水源距离、归一化植被指数(NDVI)和年降水量,温度、湿度和日照对海南臭蛙的分布影响较小。

    Abstract:

    Habitat analysis and prediction are the foundation on threatened species protection. In this study, we used the ecological niche model, MaxEnt, based on ArcGIS, combined with 66 occurrence records and 17 30 m × 30 m resolution environmental variables, to predict the potential distribution of Hainan Odorous Frog (Odorrana hainanensis) and analyzed the relationship of this species with the environmental factors in Hainan Island, China. The prediction and analysis were conducted in MaxEnt 3.3.3. Then we employed the receiver operating characteristic (ROC) curve to evaluate the accuracy resulting from the model analysis and performed the Jackknife test to evaluate the importance and contribution of environmental variables. Finally, we analyzed the potential distribution of Hainan Odorous Frog produced by MaxEnt model by habitat suitability index (HSI), in which areas with value HSI > 0.44 was considered to be high suitability, 0.20 < HSI ≤ 0.44 was moderate suitability, 0.06 < HSI ≤ 0.20 was low suitability and HSI ≤ 0.06 was unsuitability. The potential distribution of Hainan Odorous Frog is approximately 2 179 km2 at an altitude range of 200﹣1 200 m with the optimum distribution range between 600 m and 1 000 m (Fig. 4). The overall pattern of potential distribution of this species is uncontinuity and occurs in three patches (Fig. 2). The Patch Ⅰ named Jianfengling is a minimum potential distribution with an area of 218.4 km2 (Table 1), which mainly occurs in the Sanfenqu and Wufenqu in the center and Nanya in the south of Jianfengling. The Patch Ⅱ is as large as 963.5 km2 which locates in the region of Bawangling, Yinggeling and Limushan within the regions Yaqiong, Nanmeiling of northern Bawangling, and Yinggezui, Shenhan, Xiuzhailing of easthern Yinggeling and Sifenchang of central Limushan. The Patch Ⅲ is found in the region of Wuzhishan and Diaoluoshan and its size is 997.1 km2 that is similar to Patch Ⅱ. The majority of Patch Ⅲ is in the Naluoling in the west, Haodingling in the south of Wuzhishan, and Dujiacun, Baishuiling in central Diaoluoshan, as well as the Niushangling in eastern study area. A further analysis for the potential distribution area which occurs within six nature reserves gave the following results: (1) The total potential distribution (HSI > 0.06) of this frog species was 565.1 km2, of which 10.8% was highly suitable (HSI > 0.44). These habitats located in six protected areas and approximately accounted for 26.0% of the overall potential distribution region. The largest potential distribution (HSI > 0.06) with an area of 156.4 km2 was located in the Bawangling National Nature Reserve, the next one was detected in Yinggeling National Nature Reserve with 137.9 km2 (HSI > 0.06) in size. While the minimum value of potential distribution region 44.3 km2 was found in Wuzhishan National Nature Reserve (Table 2). The result of Jackknife test showed the land altitude was the main environmental factor affecting the distribution of Hainan Odorous Frog for 45.2%, the slope for 23.9%, then distance to water for 8.3%, normalized difference vegetation index for 5.2% and annual precipitation, with a value of contribution 5.2% respectively (Table 3). Temperature, humidity and sunshine had little impact. Our study indicated that the area of suitable habitat of Hainan Odorous Frog in protected areas was relatively large, while the quality of habitat outside the nature reserves may be influenced by the climate and human factors.

    参考文献
    Fong G A, Vi?a Dávila N, López-Iborra G M. 2015. Amphibian hotspots and conservation priorities in eastern Cuba identified by species distribution modelling. Biotropica, 47(1): 119-127.
    Garcia A, Ortega-Huerta M, Martinez-Meyer E. 2014. Potential distributional changes and conservation priorities of endemic amphibians in western Mexico as a result of climate change. Environmental Conservation, 41(1): 1-12.
    Groff L A, Marks S B, Hayes M P. 2014. Using ecological niche models to direct rare amphibian surveys: a case study using the Oregon Spotted Frog (Rana pretiosa). Herpetological Conservation and Biology, 9(2): 354-368.
    Guerry A D, Hunter M L. 2002. Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conservation Biology, 16(3): 745-754.
    Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8: 993-1009.
    Heisswolf A, Reichmann S, Poethke H J, et al. 2009. Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv, 13(2): 165–175.
    Hutchinson M. 2004. ANUSPLIN Version4. 3 User Guide. Canberra: The Australia National University, Center for Resource and Environment Studies.
    IUCN. 2011. IUCN Red List of Threatened Species. Version 2011. 1. [DB/OL] [2011-09-02]. http://www.iucnredlist.org/.
    Lloyd H. 2008. Influence of within-patch habitat quality on high-Andean Polylepis bird abundance. Ibis, 150(4): 735–745.
    Mortelliti A, Amori G, Boitani L. 2010. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia, 163(2): 535–547.
    Negga H E. 2007. Predictive modelling of amphibian distribution using ecological survey data: a case study of Central Portugal. Enschede: Ph. D. Thesis, International Institute for Geo-Information Science and Earth Observation.
    Ortega-Andrade H M, Rojas-Soto O, Paucar C. 2013. Novel data on the ecology of Cochranella mache (Anura: Centrolenidae) and the importance of protected areas for this critically endangered glassfrog in the Neotropics. PLoS One, 8(12): e81837.
    Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3): 231-259.
    Phillips S J, Dudik M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31: 161–175.
    Qian H. 2010. Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. Ecological Research, 25(3): 629-637.
    Sánchez D, et al. 2008. Widespread occurrence of an emerging pathogen in amphibian communities of the Venezuelan Andes. Biological Conservation, 141(11): 2898-2905.
    Soares C, Brito J C. 2006. Environmental correlates for species richness among amphibians and reptiles in a climate transition area. Vertebrate Conservation and Biodiversity, 16:1087–1102.
    Van Buskirk J. 2005. Local and landscape influence on amphibian occurrence and abundance. Ecology, 86(7): 1936-1947.
    Ward D F. 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, 9(6): 723-735.
    Whiles M R, Lips K R, Pringle C M, et al. 2006. The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment, 4(1): 27-34.
    Zhou W W, Zhang B L, Chen H M, et al. 2014. DNA Barcodes and Species Distribution Models Evaluate Threats of Global Climate Changes to Genetic Diversity: A Case Study from Nanorana parkeri (Anura: Dicroglossidae). PLoS One, 9(8): e103899.
    Zhu G, Bu W, Gao Y, et al. 2012. Potential geographic distribution of brown marmorated stink bug invasion (Halyomorpha halys). PLoS One, 7(2): e31246.
    陈云, 戴锦芳, 李俊杰. 2008. 基于影像多种特征的 CART 决策树分类方法及其应用. 地理与地理信息科学, 24(2): 33-36.
    费梁, 叶昌媛, 江建平. 2012. 中国两栖动物及其分布彩色图鉴. 成都: 四川科学技术出版社, 372-373.
    蒋有绪. 2002. 海南岛热带林生物多样性及其形成机制, 北京: 科学出版社, 219-324.
    刘惠宁, 陈辈乐. 2012. 海南鹦哥岭自然保护区两栖动物区系及属种海南新纪录. 动物学杂志, 47(1): 51-61.
    史海涛. 2002. 海南岛两栖动物区系及地理区划. 四川动物, 21(3): 174-176.
    汪继超, 梁伟, 史海涛, 等. 2008. 海南省尖峰岭保护区海南特有两栖类分布和种群密度调查. 四川动物, 27(6): 1163-1164.
    吴庆明, 王磊, 朱瑞萍, 等. 2016. 基于MAXENT模型的丹顶鹤营巢生境适宜性分析——以扎龙保护区为例. 生态学报, 36(12): - .
    张声粦. 1984. 我国热带, 南亚热带山区气候特征与开发利用的探讨. 热带地理, 4(1): 9-13.
    周璋. 2009. 海南尖峰岭热带山地雨林小气候特征研究. 北京: 中国林业科学研究院硕士学位论文.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄勇杰,卢佳斌,王锋堂,林英华,刘磊,米红旭,莫方群,方精,李佳灵.2017.基于MaxEnt模型预测海南岛海南臭蛙的潜在地理分布.动物学杂志,52(1):30-41.

复制
文章指标
  • 点击次数:2755
  • 下载次数: 2999
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-06-06
  • 最后修改日期:2016-12-27
  • 录用日期:2016-12-23
  • 在线发布日期: 2017-01-12