光周期和光刺激对雄性灰文鸟行为及生理状况的影响
作者单位:

辽宁大学生命科学院,辽宁大学生命科学院,辽宁大学生命科学院,辽宁大学生命科学院,辽宁大学生命科学院,辽宁大学生命科学院

基金项目:

国家自然科学基金项目(No. 31100271)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    光周期变化是导致动物行为发生变化的重要因素之一。为揭示不同光周期条件下鸟类对光刺激的生理和行为反应,本文通过比较雄性灰文鸟(Lonchura oryzivora)在经长(16L︰8D)、中(12L︰12D)、短(8L︰16D)3个光周期条件驯化后,再给予72 h的光刺激,研究其行为、血清皮质酮含量和血清蛋白的变化特征。结果表明,光周期改变直接影响雄性灰文鸟的行为。雄性灰文鸟的血清皮质酮含量受光周期和光刺激的影响,中光照周期条件下雄性灰文鸟皮质酮激素对光刺激的响应与长、短光照周期条件下明显不同。不同光周期条件下灰文鸟α-球蛋白区、β-球蛋白区和γ-球蛋白区血清蛋白的成分存在差异。上述结果表明,光周期显著影响雄性灰文鸟对光刺激的生理应激反应方式。

    Abstract:

    Photostimulation affects a range of physiological and behavioral characters in birds. However, whether such changes would be affected by photoperiod largely remain unknown. In order to reveal the role of photoperiods in mediating the responses of male Java Sparrow (Lonchura oryzivora) to photostimulation, a total of 18 Java Sparrows were randomly separated into three groups with each containing six individuals. These three groups were housed in separate chambers and exposed to mid photoperiod (12L︰12D, supplemented with artificial lights between 6:00 to 18:00), artificial long (16L︰8D, lights on 6:00 to 22:00) and short (8L︰16D, lights on 6:00 to 14:00) photoperiods respectively. In either case, artificial lights were provided with white fluorescent lamps (light intensity at cage level 550 lx) which were operated by automatic programmed devices. After 30 days, the birds belonging to each photoperiodic group were subsequently separated into two subgroups each with three individuals. Each photoperiodic experiment group was provided uninterrupted light for 72 h and the control group remain unchanged with the behavior in both groups being completely monitored by digital cameras. The quantity of corticosterone in serum was estimated by ELISA Kit and serum proteins were separated and identified by SDS-PAGE electrophoresis after 72 h photostimulation. Videos were then analyzed, with the length of all kinds of behavior (activity, nest, petch, feeding and preening) being recorded. Behavioral data and the changes of corticosterone were analyzed by two-way analysis of variance (ANOVA). The migration rate of SDS-PAGE gel (Rf value) was calculated, and the serum protein zoning was divided according to the range of Rf. The results showed that: 1. Photoperiod affected the behavior of Java Sparrow (Fig. 1). 2. Photoperiod affected corticosterone hormones in male Java Sparrow, with the response of corticosterone in mid photoperiod differed from the other two photoperiods (Fig. 2). 3. Serum protein components were affected by photoperiod (Table 1). All these results suggested that photoperiod mediated physiological responses of male Java Sparrow to photostimulation.

    参考文献
    Aton S J, Block G D, Tei H, et al. 2004. Plasticity of circadian behavior and the suprachiasmatic nucleus following exposure to non-24-hour light cycles. Journal of biological rhythms, 19(3): 198-207.
    Almazán-Rueda P, Van Helmond A T, Verreth J A J, et al. 2005. Photoperiod affects growth, behaviour and stress variables in Clarias gariepinus. Journal of Fish Biology, 67(4): 1029-1039.
    Bradley N L, Leopold A C, Ross J, et al. 1999. Phenological changes reflect climate change in Wisconsin. Proceedings of the National Academy of Sciences, 96(17): 9701-9704.
    Benstaali C, Mailloux A, Bogdan A, et al. 2001. Circadian rhythms of body temperature and motor activity in rodents: their relationships with the light-dark cycle. Life sciences, 68(24): 2645-2656.
    Boonstra R. 2005. Equipped for life: the adaptive role of the stress axis in male mammals. Journal of Mammalogy, 86(2): 236-247.
    Batavani R A, Ansari M H, Asri S. 2006. Concentrations of serum total protein and protein fractions during diestrus and pregnancy in Makuii ewes. Comparative Clinical Pathology, 15(4): 227-230.
    Bradshaw W E, Holzapfel C M. 2007. Evolution of animal photoperiodism. Annual Review of Ecology, Evolution, and Systematics, 38(1): 1-25.
    Coppack T, Pulido F. 2004. Photoperiodic response and the adaptability of avian life cycles to environmental change. Advances in Ecological Research, 35(2): 131-150.
    Charmantier A, McCleery R H, Cole L R, et al. 2008. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science, 320(5877): 800-803.
    Dobrowolska A, Gromadzka-Ostrowska J. 1983. Influence of photoperiod on morphological parameters, androgen concentration, haematological indices and serum protein fractions in common vole (Microtus arvalis, Pall). Comparative Biochemistry and Physiology Part A: Physiology, 74(2): 427-433.
    Ebihara S, Kawamura H. 1981. The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. Journal of comparative physiology, 141(2): 207-214.
    Ebling F J P, Goldsmith A R, Follett B K. 1982. Plasma prolactin and luteinizing hormone during photoperiodically induced testicular growth and regression in starlings (Sturnus vulgaris). General and comparative endocrinology, 48(4): 485-490.
    Evanson N K, Tasker J G, Hill M N, et al. 2010. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology, 151(10): 4811-4819.
    Follett B K, Farner D S, Mattocks P W. 1975. Luteinizing hormone in the plasma of white-crowned sparrows (Zonotrichia leucophrys gambelii) during artificial photostimulation. General and comparative endocrinology, 26(1): 126-134.
    Gill J, Jakubów K, Kompanowska-Jezierska E, et al. 1985. Seasonal changes in blood serum protein fractions and in activity of AspAT and AlAT in Arabian brood mares and their foals. Comparative Biochemistry and Physiology Part A: Physiology, 82(1): 167-178.
    Goldman B D. 2001. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. Journal of biological rhythms, 16(4): 283-301.
    Houben T, Deboer T, van Oosterhout F, et al. 2009. Correlation with behavioral activity and rest implies circadian regulation by SCN neuronal activity levels. Journal of biological rhythms, 24(6): 477-487.
    Kornhauser J M, Nelson D E, Mayo K E, et al. 1990. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron, 5(2): 127-134.
    Kalsbeek A, Foppen E, Schalij I, et al. 2008. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLOS one, 3(9): e3194.
    Koren L, Whiteside D, Fahlman A, et al. 2012. Cortisol and corticosterone independence in cortisol-dominant wildlife. General and Comparative Endocrinology, 177(1): 113-119
    LaFreniere P, MacDonald K. 2013. A post-genomic view of behavioral development and adaptation to the environment. Developmental Review, 33(2): 89-109.
    McFarland W N. 1986. Light in the sea-correlations with behaviors of fishes and invertebrates. American Zoologist, 26(2): 389-401.
    Munck A, Guyre P M, Holbrook N J. 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine reviews, 5(1): 25-44.
    Mrugala M, Zlomanczuk P, Jagota A, et al. 2000. Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 278(4): R987-R994.
    Norris J E, Ryan S G, Beers T C. 1999. A Search for Stars of Very Low Metal Abundance. III. UBV Photometry of Metal-Weak Candidates. The Astrophysical Journal Supplement Series, 123(2): 639.
    Navara K J, Nelson R J. 2007. The dark side of light at night: physiological, epidemiological, and ecological consequences. Journal of Pineal Research, 43(3): 215-224.
    Ouyang J Q, de Jong M, Hau M, et al. 2015. Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination. Biology Letters, 11(8): 20150517.
    Pavlidis M, Berry M, Divanach P, et al. 1997. Diel pattern of haematocrit, serum metabolites, osmotic pressure, electrolytes and thyroid hormones in sea bass and sea bream. Aquaculture International, 5(3): 237-247.
    Pyter L M, Adelson J D, Nelson R J. 2007. Short days increase hypothalamic-pituitary-adrenal axis responsiveness. Endocrinology, 148(7): 3402-3409.
    Pandey E, Khanam S, Srivastava A. 2015. Impact on Behaviour and Serum Proteins of Coturnix coromandelica Induced due to Acute Photoperiodic Stress. International Journal of Pure & Applied Bioscience, 3(3): 241-248.
    Rich E, Romero L. 2007. Daily and photoperiod variations of basal and stress-induced corticosterone concentrations in house sparrows (Passer domesticus). Journal of Comparative Physiology B, 171(7): 543-547.
    Reparaz L B, van Oers K, Naguib M, et al. 2014. Mate preference of female blue tits varies with experimental photoperiod. PloS one, 9(3): e92527.
    Russ A, Rüger A, Klenke R. 2015b. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. Journal of Ornithology, 156(1): 123-131.
    Saad A H, El Ridi R. 1988. Endogenous corticosteroids mediate seasonal cyclic changes in immunity of lizards. Immunobiology, 177(4): 390-403.
    Sapolsky R M. 1992. Neuroendocrinology of the stress-response. Cambridge: MIT Press, 2273-2278.
    Shettleworth S J, Hampton R R, Westwood R P. 1995. Effects of season and photoperiod on food storing by black-capped chickadees, Parus atricapillus. Animal Behaviour, 49(4): 989-998.
    Sapolsky R M, Romero L M, Munck A U. 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions 1. Endocrine reviews, 21(1): 55-89.
    Stier K S, Almasi B, Gasparini J, et al. 2009. Effects of corticosterone on innate and humoral immune functions and oxidative stress in barn owl nestlings. Journal of Experimental Biology, 212(13): 2085-2091.
    Stevenson T J, Prendergast B J. 2015. Photoperiodic time measurement and seasonal immunological plasticity. Frontiers in Neuroendocrinology, 37(1): 76-88.
    Wingfield J, Ramenofsky M. 1999. Hormones and the behavioral ecology of stress. Sheffield: Sheffield Press, 1-51.
    Wang G, Harpole C E, Paulose J, et al. 2014. The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow, Passer domesticus. Hormones and behavior, 65(4): 372-379.
    边疆晖, 吴雁. 2009. 哺乳动物的生理应激反应及其生态适应性. 兽类学报, 29(4): 352-358.
    蒋德梦, 农正权, 蒋爱伍, 等. 2015. 北热带石灰岩地区红耳鹎的繁殖生态和巢址选择. 动物学杂志, 50(3): 359-365.
    文璐, 孙圣华. 2012. 肺炎患者血清清蛋白浓度检测的临床意义. 现代医药卫生, 28(4): 585-586.
    肖岚, 肖海军, 薛芳森. 2010. 动物光周期性的进化. 江西植保, 33(2): 49-56.
    杨晓君, 杨岚. 1998. 笼养大紫胸鹦鹉的活动时间分配. 动物学报, 44(3): 277-285.
    闫佳续, 金建丽, 杨春文, 等. 2015. 普通鵟雌雄个体血清蛋白比较分析. 西南农业学报, 28(1): 444-446.
    王宗仁, 刘伟华, 叶恩琦, 等. 1991. 五种啮齿类动物核型和血清蛋白质的SDS-聚丙烯酰胺凝胶电泳分析. 兽类学报, 11(4): 306-309.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘燕,张志委,赵婷婷,霍雅鹏,万冬梅,殷江霞.2017.光周期和光刺激对雄性灰文鸟行为及生理状况的影响.动物学杂志,52(6):954-963.

复制
文章指标
  • 点击次数:2149
  • 下载次数: 1933
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2017-03-18
  • 最后修改日期:2017-10-31
  • 录用日期:2017-10-30
  • 在线发布日期: 2017-11-30