黄河口潮间带大型底栖动物群落特征
作者:
作者单位:

① 宁波大学海洋学院 宁波 315832;② 济宁医学院生物科学学院 济宁 272067

基金项目:

国家自然科学基金项目(No. 41676139),国家海洋局海洋生态环境科学与工程重点实验室项目


Research on Intertidal Macrobenthic Community in the Yellow River Estuary
Author:
Affiliation:

1.School of Marine Sciences,Ningbo University;2.China;3.②College of Life Science,Jining Medical University;4.College of Life Science,Jining Medical University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    2013年2月、5月和8月对黄河入海口附近潮间带的大型底栖动物进行了调查,调查工作涵盖3个季节2条断面的样品,分析了黄河口潮间带大型底栖动物的群落结构特征,包括群落种类组成、丰度和生物量、优势种、多样性,采用CLUSTER聚类分析了大型底栖动物的群落结构,并用AMBI和m-AMBI对底栖群落和环境质量进行了评估。本次调查共鉴定出大型底栖动物52种,其中,多毛纲动物24种,软体动物14种,甲壳动物12种,鱼类1种,纽虫1种。多毛纲动物为该海域底栖群落的主要成分,占据了群落总种数的46.15%。从季节来看,物种数春季最高(38种),夏季则处于最低水平(16种)。群落丰度和生物量均具有明显的季节变化,丰度在春季达到最高,为3 549.33 ind/m2,远高于冬季的256.67 ind/m2和夏季的100.67 ind/m2,其中扁玉螺(Neverita didyma)是丰度的主要贡献者,贡献了全年群落总丰度的75.44%。生物量春季最高,夏季次之,冬季最低。在全年尺度上,甲壳动物的日本大眼蟹(Macrophthalmus japonicus)是生物量的主要贡献者,占据总生物量的49.86%。群落的季节变化也得到了群落CLUSTER分析与SIMPER分析结果的验证。这与黄河入海口附近底质不稳定,易受侵蚀、环境条件如盐度等具有明显季节差异,以及一定程度的人为扰动密切相关。AMBI和m-AMBI的分析结果显示,该区域环境质量状况较好,仅受到了轻微扰动影响。

    Abstract:

    According to the field investigation in Yellow River Estuary at February May and August in 2013, the characteristics of intertidal macrozoobenthic community from 2 sections in 3 seasons, including its species, abundance, biomass, dominant species and diversity, were analyzed. The community composition and structure were analyzed, and ecological quality was also evaluated by AMBI and m-AMBI. A total of 52 macrobenthic species were collected and identified. Polychaete was the most speciose group with 24 species (46.15%), followed by Mollusca (14 species), crustacea (12 species), fish (1 species) and Nemertinea (1 species). Species number was highest in spring (38 species), and lowest in summer (16 species) (Table 1). Seasonal variations were identified for abundance and biomass. Abundance was highest in spring (3 549.33 ind/m2), much higher than in winter (256.67 ind/m2) and summer (100.67 ind/m2) (Table 3). Neverita didyma was the major contributor, accounting for 75.44% of the total abundance. Biomass also showed significant seasonal variation, highest in spring, followed by summer and then winter (Table 3). Macrophthalmus japonicus was the most important contributor to the total biomass, accounting for 49.86% across all sampling seasons. These results were also confirmed by CLUSTER and SIMPER analysis (Fig. 2). The change of community structure was caused by unstable substance near the Yellow River Estuary and seasonal variation of environmental factors such as salinity, and some kinds of human activities. The analyses of AMBI and m-AMBI showed that the ecological status here was slightly disturbed (Table 4).

    参考文献
    Birk S, Bonne W, Borja A, et al. 2012. Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators, 18: 31–41. Borja A, Muxika I. 2005. Guidelines for the use of AMBI (AZTI’s Marine Biotic Index) in the assessment of the benthic ecological quality. Marine Pollution Bulletin, 50(7): 787–789. Borja A, Tunberg B G. 2011. Assessing benthic health in stressed subtropical estuaries, eastern Florida, USA using AMBI and M-AMBI. Ecological Indicators, 11(2): 295–303. Cui B L, Li X Y. 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology, 127(1): 32–40. Elias R, Bremec C S. 1994. Biomonitoring of water quality using benthic communities in Blanca Bay (Argentina). Science of the Total Environment, 158: 45–49. Gesteira J L G, Dauvin J C, Fraga M S. 2003. Taxonomic level for assessing oil spill effects on soft-bottom sublitoral benthic communities. Marine Pollution Bulletin, 46(5): 562–572. Gusmao J B, Brauko K M, Eriksson B K, et al. 2016. Functional diversity of macrobenthic assemblages decreases in response to sewage discharges. Ecological Indicators, 66: 65–75. Han Q X, Zhang Y, Liu D, et al. 2013. Effects of intensive scallop mariculture on macrobenthic assemblages in Sishili Bay, the northern Yellow Sea of China. Hydrobiologia, 718(1): 1–15. Herman P M J, Middelburg J J, van de Koppel J, et al. 1999. Ecology of estuarine macrobenthos. Advances in Ecological Research, 29: 195–240. Luo X, Sun K, Yang J, et al. 2016. A comparison of the applicability of the Shannon-Wiener index, AMBI and M-AMBI indices for assessing benthic habitat health in the Huanghe (Yellow River) Estuary and adjacent areas. Acta Oceanologica Sinica, 35(6): 50–58. Patrício J, Neto J M, Teixeira H, et al. 2009. The robustness of ecological indicators to detect long-term changes in the macrobenthos of estuarine systems. Marine Environmental Research, 68(1): 25–36. Pearson T H, Rosenberg R. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanographic Marine Biology Annual Review, 16: 229–311. Pinto R, Patrício J, Baeta A , et al. 2009. Review and evaluation of estuarine biotic indices to assess benthic condition. Ecological Indicators, 9(1): 1–25. van Hoey G, Permuy D C, Vandendriessche S, et al. 2013. An ecological quality status assessment procedure for soft-sediment benthic habitats: Weighing alternative approaches. Ecological Indicators, 25: 266–278. Yang W, Li M, Sun T, et al. 2017. The joint effect of tidal barrier construction and freshwater releases on the macrobenthos community in the northern Yellow River Delta (China). Ocean & Coastal Management, 136: 83–94. Ysebaert T, Herman P M J. 2002. Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment. Marine Ecology Progress Series, 244: 105–124. 蔡文倩, 刘录三, 孟伟, 等. 2012. AMBI方法评价环渤海潮间带底栖生态质量的适用性. 环境科学学报, 32(4): 992–1000. 蔡学军, 田家怡. 2000. 黄河三角洲潮间带动物多样性的研究. 海洋湖沼通报, 22(4): 45–52. 程济生. 2005. 黄海无脊椎动物资源结构及多样性. 中国水产科学, 12(1): 68–75. 董贯仓, 李秀启, 刘峰, 等. 2012. 黄河三角洲潮间带底栖动物群落结构分析及环境质量评价. 海洋环境科学, 31(3): 370–374. 顾炎斌, 宋文豪, 姚韡远, 等. 2013. 东营市河口区潮间带大型底栖动物群落结构特征. 海洋环境科学, 32(5): 702–706. 韩庆喜, 李宝泉, 韩秋影, 等. 2011. 渔业捕捞对威海港附近海域底上大型底栖群落结构影响的初步研究. 海洋通报, 30(2): 121–126. 韩庆喜, 袁泽轶, 陈丙见, 等. 2014. 烟台潮间带大型底栖动物群落组成和结构研究. 海洋科学, 38(9): 59–68. 冷宇, 刘一霆, 刘霜, 等. 2013. 黄河三角洲南部潮间带大型底栖动物群落结构及多样性. 生态学杂志, 32(11): 3054–3062. 李帅, 吕腾腾, 韩庆功, 等. 2017. 2010 年 5 月与 2013 年 6 月黄、渤海大型底栖动物群落组成和结构的比较研究. 海洋学研究, 35(1): 86–94. 刘录三, 孟伟, 郑丙辉, 等. 2008. 辽东湾北部海域大型底栖动物研究:Ⅰ.种类组成与数量分布. 环境科学研究, 21(6): 118–123. 山东省科学技术委员会. 1990. 山东省海岸带和海涂资源综合调查报告集. 北京: 中国科学技术出版社, 405–414 王晓晨, 李新正, 王洪法, 等. 2008. 黄河口岔尖岛、大口河岛和望子岛潮间带秋季大型底栖动物生态学调查. 动物学杂志, 43(6): 77–82. 王志忠, 张金路. 2012. 黄河入海口潮间带大型底栖动物群落组成及次级生产力. 海洋环境科学, 31(5): 657–661. 吴斌, 宋金明, 李学刚. 2014. 黄河口大型底栖动物群落结构特征及其与环境因子的耦合分析. 海洋学报, 36(4): 62–72. 吴耀泉. 1983. 关于浅海底栖动物的生态分布和底质环境关系的概述. 海洋科学, 7(6): 58–61. 周红, 张志南. 2003. 大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用. 青岛海洋大学学报: 自然科学版, 33(1): 58–64.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严润玄,朱峰,韩庆功,黄晨,陈锵,韩庆喜.2019.黄河口潮间带大型底栖动物群落特征.动物学杂志,54(6):835-844.

复制
文章指标
  • 点击次数:1193
  • 下载次数: 1733
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-04-01
  • 最后修改日期:2019-10-22
  • 录用日期:2019-10-18
  • 在线发布日期: 2019-12-10