姜黄素对双酚A致小鼠卵巢氧化损伤的保护
作者:
作者单位:

烟台大学生命科学学院 烟台 264025

基金项目:

山东省高等学校科技计划项目(No. J17KA257)


Protective Effect of Curcumin against Ovarian Oxidative Damage Induced by Bisphenol A in Mice
Author:
Affiliation:

College of Life Sciences,Yan Tai University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文旨在研究姜黄素(CRC)对双酚A(BPA)诱导的小鼠卵巢氧化损伤的保护作用。将28日龄雌性小鼠分为对照组、姜黄素组、双酚A组和双酚A加姜黄素组,连续灌胃6周。收集卵巢,通过活性氧(ROS)水平的检测、卵巢闭锁卵泡的观察以及3种关键抗氧化酶表达和活性的测定,研究姜黄素对双酚A诱发的卵巢氧化损伤的保护作用及机制。结果显示,与对照组相比,双酚A暴露后明显增加了卵巢的活性氧水平,造成氧化应激,提高了卵巢中有腔卵泡闭锁比例。与双酚A组相比,双酚A和姜黄素共同处理组降低了卵巢的活性氧水平和卵巢中有腔卵泡闭锁比例。双酚A暴露降低了卵巢超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)以及过氧化氢酶(CAT)的表达和活性,姜黄素逆转了双酚A诱导的3种抗氧化酶表达和活性的下降。结果表明,姜黄素可逆转双酚A通过氧化应激造成的卵巢损伤。

    Abstract:

    This work is aimed to investigate the protective effect of curcumin (CRC) against ovarian oxidative stress induced by bisphenol A (BPA) in mice. Firstly, in order to explore the appropriate protective concentration of curcumin, 28-day-old female mice were divided into six groups: control group, curcumin (200 mg/kg) group, bisphenol A (10 mg/kg) group, bisphenol A (10 mg/kg) + curcumin (50 mg/kg) group, bisphenol A (10 mg/kg) + curcumin (100 mg/kg) group, and bisphenol A (10 mg/kg) + curcumin (200 mg/kg) group. Then, 28-day-old female mice were divided into four groups: control group, curcumin (100 mg/kg) group, bisphenol A (10 mg/kg) group, and bisphenol A (10 mg/kg) + curcumin (100 mg/kg) group to explore the protective mechanism of curcumin. Corn oil, bisphenol A and/or curcumin were orally administered for six weeks. After treatment, some ovaries were collected to measure reactive oxygen species (ROS) levels and to observe follicular atresia by histological evaluation after hematoxylin-eosin staining. The mRNA expression and activities of antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were also tested. The experimental data were statistically analyzed with variance analysis. The results showed that Bisphenol A exposure increased reactive oxygen species levels and induced ovarian oxidative stress, while co-treatment with curcumin could reverse bisphenol A-induced up-regulation of reactive oxygen species (Table 2). Bisphenol A exposure increased the percentage of atretic antral follicles and co-treatment with curcumin decreased antral follicle atresia (Table 2). Bisphenol A decreased the expression and activities of three key antioxidants, SOD, GPx and CAT. Co-treatment with curcumin could reverse bisphenol A-induced down-regulation of expression and activities of SOD, GPx and CAT (Fig. 2, 3). Therefore, it is possible that bisphenol A induces damage to the ovaries by oxidative stress pathway, and curcumin can reverse the ovary toxicity of bisphenol A to some degree.

    参考文献
    Agarwal A, Gupta S, Sekhon L, et al. 2008. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxidants and Redox Signaling, 10(8): 1375–1403. Agarwal A, Gupta S, Sharma R K. 2005. Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 3: 28. Aktas C, Kanter M, Kocak Z. 2012. Antiapoptotic and proliferative activity of curcumin on ovarian follicles in mice exposed to whole body ionizing radiation. Toxicology and Industrial Health, 28(9): 852–863. Avci B, Bahadir A, Tuncel O K, et al. 2016. Influence of alpha-tocopherol and alpha-lipoic acid on bisphenol-A-induced oxidative damage in liver and ovarian tissue of rats. Toxicology and Industrial Health, 32(8): 1381–1390. Chao H H, Zhang X F, Chen B, et al. 2012. Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochemistry and Cell Biology, 137(2): 249–259. Chouhan S, Yadav S K, Prakash J, et al. 2015. Increase in the expression of inducible nitric oxide synthase on exposure to bisphenol A: a possible cause for decline in steroidogenesis in male mice. Environmental Toxicology and Pharmacology, 39(1): 405–416. Corn C M, Hauser-Kronberger C, Moser M. et al. 2005. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertility and Sterility, 84(3): 627–633. El-Beshbishy H A, Aly H A, El-Shafey M. 2013. Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats. Toxicology and Industrial Health, 29(10): 875–887. Fernández M, Bourguignon N, Lux-Lantos V, et al. 2010. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats.Environmental Health Perspectives, 118(9): 1217–1222. Haanpaa M, Treede R D. 2012. Capsaicin for neuropathic pain: linking traditional medicine and molecular biology. European Neurology, 68(5): 264–275. Jewgenow K, Heerdegen B, Muller K. 1999. In vitro development of individually matured bovine oocytes in relation to follicular wall atresia. Theriogenology, 51(4): 745–756. Li Y, Zhang W, Liu J, et al. 2014. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reproductive Toxicology, 44: 33–40. Marino M, Pellegrini M, La Rosa P, et al. 2012. Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids, 77(10): 910–917. Paulose T, Tannenbaum L V, Borgeest C, et al. 2012. Methoxychlor- induced ovarian follicle toxicity in mice: dose and exposure duration-dependent effects. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 95(3): 219–224. Peretz J,Craig Z R,Flaws J A. 2012. Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Biology of Reproduction, 87(3): 63. Rivera O E, Varayoud J, Rodríguez H A, et al. 2011. Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reproductive Toxicology, 32(3): 304–312. Seachrist D D, Bonk K W, Ho S M, et al. 2016. A review of the carcinogenic potential of bisphenol A. Reproductive Toxicology, 59: 167–182. Signorile P G, Spugnini E P, Citro G, et al. 2012. Endocrine disruptors in utero cause ovarian damages linked to endometriosis. Frontiers in Biosciece-ladmark (Elite Edition), 4: 1724–1730. Sohoni P. 1998. Several environmental oestrogens are also anti androgens. Journal of Endocrinology, 158(1): 327-339. Valko M, Leibfritz D, Moncol J, et al. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1): 44–84. Vandenberg L N, Hauser R, Marcus M, et al. 2007. Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2): 139–177. Voznesens’ka T, Bryzhina T M, Sukhina V S, et al. 2010. Effect of NF-kappaB activation inhibitor curcumin on the oogenesis and follicular cell death in immune ovarian failure in mice. Fiziolohichnyi Zhurnal, 56(4): 96–101. Wang F, Hua J, Chen M, et al. 2012. High urinary bisphenol A concentrations in workers and possible laboratory abnormalities. Occupational and Environmental Medicine, 69(9): 679–684. Wang X N, Zhang C J, Diao H L, et al. 2017. Protective Effects of Curcumin against sodium arsenite-induced ovarian oxidative injury in a mouse model. Chinese Medical Journal, 130(9): 1026–1032. Yan Z, Dai Y, Fu H, et al. 2018. Curcumin exerts a protective effect against premature ovarian failure in mice. Molecular Endocrinology, 60(3): 261–271. Zaid S S, Othman S, Kassim N M. 2014. Potential protective effect of Tualang honey on BPA-induced ovarian toxicity in prepubertal rat. BMC Complementary and Alternative Medicine, 14: 509. Zhang H Q, Zhang X F, Zhang L J, et al. 2012. Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Molecular Biology Reports, 39(5): 5651– 5657. Zhou W, Fang F, Zhu W, et al. 2016. Bisphenol A and ovarian reserve among infertile women with polycystic ovarian syndrome. International Journal of Environmental Research and Public Health, 14(1): E18. 曹羽明, 翟鑫兰, 张铭, 等. 2017. 双酚A亚慢性暴露对雌性小鼠储备功能的影响. 中国生殖健康杂志, 29(3): 212–216. 邓政道, 陈汉, 田素雯, 等. 2013. 双酚A 经口亚急性染毒对雌性小鼠卵巢结构和功能的影响. 环境与职业医学, 30(8): 619–622. 李昱辰, 张文昌, 汪靖. 2013. 未成年大鼠双酚 A 暴露对卵巢发育影响. 中国公共卫生, 29(1): 84–86. 马明月, 张玉敏, 裴秀从, 等. 2015. 孕期暴露双酚 A 对子代雌性大鼠卵巢类固醇激素合成的影响. 工业卫生与职业病, 41(1): 7–10. 谭艳芳, 陈锋, 曾鸣, 等. 2011. 双酚A对SD大鼠卵巢毒性作用实验研究. 实用预防医学, 18(4): 606–608. 张石磊, 马双, 史万玉, 等. 2019. 双酚 A 对孕鼠子宫、卵巢相关因子的影响及菟丝子黄酮的缓解作用. 中国兽医学报, 39(2): 337–348.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李倩,张润驰,张锦松,王伟,孙国秀.2019.姜黄素对双酚A致小鼠卵巢氧化损伤的保护.动物学杂志,54(6):875-882.

复制
文章指标
  • 点击次数:1072
  • 下载次数: 1419
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-07-03
  • 最后修改日期:2019-10-22
  • 录用日期:2019-10-18
  • 在线发布日期: 2019-12-10