非线性鸣声对雄性凹耳蛙应答的影响
作者:
作者单位:

安徽师范大学生命科学学院 芜湖 241000

中图分类号:

Q958

基金项目:

国家自然科学基金项目(No. 31640073,31872230)


The Influences of Nonlinear Phenomena on the Vocal Responses of Male Concave-eared Torrent Frogs (Odorrana tormota)
Author:
Affiliation:

College of Life Sciences,Anhui Normal University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解非线性鸣声对凹耳蛙(Odorrana tormota)应答音的影响以及非线性鸣声是否能够增强鸣声的不可预测性,本研究通过回放非线性鸣声和线性鸣声来刺激陌生雄性凹耳蛙,并记录应答次数及统计分析应答音相关参数。结果表明,回放非线性鸣声时会引起陌生蛙(n = 22)更多次数的应答,但两种刺激引起的首次应答时间没有显著差异。对应答音相关参数分析表明,线性鸣声引起的应答音在总时长上比非线性鸣声引起的应答音更长且具有显著差异,而其他声音参数(包括平均基频、最大基频、最小基频、主频)均没有显著差异。推测当陌生雄蛙听到同类鸣叫时,出于保护领地和资源的本能反应,陌生蛙都会第一时间作出反应,因此在两类声音的应答反应时间上并没有区别。而在应答次数上,非线性鸣声引起了凹耳蛙更多次数的应答,可能是由于鸣声中的非线性现象使得声音更加复杂,包含更多信息,容易提高声音接收者对这类声音的关注度。本研究结果表明,凹耳蛙鸣声中包含的非线性现象能够增强其声音的不可预测性,引起陌生蛙产生更多的应答次数。

    Abstract:

    In order to explore the influences of nonlinear phenomena (NLP) on the vocal responses in concave-eared torrent frogs (Odorrana tormota), and whether NLP can enhance the unpredictability of calls, strange male concave-eared torrent frogs were stimulated by replaying NLP and linear calls (Fig. 1). The numbers of evoked vocal responses were recorded and the spectral and temporal parameters of response calls were analyzed. The results revealed that NLP calls could cause more response calls in strange frogs (n = 22, P < 0.05, Table 2), but there was no significant difference in the first response latency (P > 0.05, Table 3) of two kinds of evoked response calls. We then employed Praat to divide the calls into different temporal segments and obtain various temporal and spectral parameters. Wilcoxon’s signed rank test was used to determine whether there was significant difference in sound parameters of two kinds of evoked response calls. The results showed that the total duration of response calls stimulated by linear calls was longer than that of NLP-stimulated ones, while other vocal parameters, such as average fundamental frequency, maximum fundamental frequency, minimum fundamental frequency and dominant frequency, showed no significant difference (P > 0.05, Table 4). It was possible that strange male frogs would respond to the conspecific calls instantly in order to protect their territory and resources, however, there were no differences in response time to NLP calls and linear calls. In terms of response call numbers, more responses were stimulated by NLP calls which contain more complicated information, and thus increase the attention of the receiver. The current study reveals that the NLP calls will enhance vocal unpredictability and cause more responses of strange male frogs.

    参考文献
    Bass A H, Mckibben J R. 2003. Neural mechanisms and behaviors for acoustic communication in teleost fish. Progress in Neurobiology, 69(1):1–26.
    Bee M A. 2012. Sound source perception in anuran amphibians. Current Opinion in Neurobiology, 22(2):301–310.
    Blumstein D T, Charlotte Récapet. 2010. The sound of arousal: the addition of novel non-linearities increases responsiveness in marmot alarm calls. Ethology, 115(11):1074–1081.
    Bohn K M, Schmidt-French B, Ma S T, et al. 2008. Syllable acoustics, temporal patterns, and call composition vary with behavioral context in mexican free-tailed bats. The Journal of the Acoustical Society of America, 124(3):1838.
    Boersma P, Weenink D. 2011. PRAAT: doing phonetics by computer (Version 5.2.22) [Computer program]. Retrieved Feb 1, from http://www.praat.org.
    Bradbury J W, Vehrencamp S L. 1998. Principles of animal communication. Sunderland, MA: Sinauer Associates, 75–112.
    Fan Y, Yue X, Yang J, et al. 2019. PReference of spectral features in auditory processing for advertisement calls in the music frogs. Frontiers in Zoology, 16(1):13.
    Favaro L, Briefer E F, Mcelligott A G. 2014. Artificial neural network approach for revealing individuality, group membership and age information in goat kid contact calls. Acta Acustica united with Acustica, 100(4):782–789.
    Feng A S, Arch V S, Yu Z, et al. 2009. Neighbor-Stranger discrimination in concave-eared torrent frogs, Odorrana tormota. Ethology, 115(9):851–856.
    Feng A S, Narins P M, Xu C H. 2002. Vocal acrobatics in a Chinese frog, Amolops tormotus. The Science of Nature, 89(8):352–356.
    Feng A S, Narins P M, Xu C H, et al. 2006. Ultrasonic communication in frogs. Nature, 440(7082):333.
    Fitch W T, Neubauer J, Herzel H. 2002. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63(3): 407–418.
    Gerhardt H C, Huber F. 2003. Acoustic communication in insects and anurans: common problems and diverse solutions. The Journal of the Acoustical Society of America, 114(2):559–559.
    Jaime Bosch and Rafael Márquez. 2001. Call timing in male-male acoustical interactions and female choice in the midwife toad Alytes obstetricans. Copeia, 2001(1):169–177.
    Jin L, Yang S, Kimball R T, et al. 2015. Do pups recognize maternal calls in pomona leaf-nosed bats, Hipposideros pomona? Animal Behaviour, 100:200–207.
    Jones D L, Jones R L, Ratnam R. 2015. The spatio-temporal analysis of male-male vocal interactions in chorusing frogs. The Journal of the Acoustical Society of America, 138(3):1727–1727.
    Karp D, Manser M B, Wiley E M, et al. 2014. Nonlinearities in meerkat alarm calls prevent receivers from habituating. Ethology, 120(2):189–196.
    Marcela Fernández-Vargas, Johnston R E. 2015. Ultrasonic vocalizations in golden hamsters (Mesocricetus auratus) reveal modest sex differences and nonlinear signals of sexual motivation. PLoS One,e0116789.
    Narins P M, Feng A S, Lin W, et al. 2004. Old world frog and bird vocalizations contain prominent ultrasonic harmonics. Journal of the Acoustical Society of America, 115(2):910.
    Penna M, Pottstock H, Velasquez N. 2005. Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Animal Behaviour, 70(3): 639–651.
    Riede T, Owren M J, Arcadi A C. 2004. Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, 64(3): 277–291.
    Ryan M J, Brenowitz E A.1985. The role of body size, phylogeny, and ambient noise in the evolution of bird song. American Naturalist, 126(1):87–100.
    Shen J X, Feng A S, Xu Z M, et al. 2008. Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature, 453(7197): 914–916.
    Suthers R A, Narins P M, Lin W Y, et al. 2006. Voices of the dead: complex nonlinear vocal signals from the larynx of an ultrasonic frog. The Journal of Experimental Biology, 209(24): 4984–4993.
    Stoeger A S, Charlton B D, Kratochvil H, et al. 2011. Vocal cues indicate level of arousal in infant African elephant roars. The Journal of the Acoustical Society of America, 130(3): 1700–1710.
    Townsend S W, Manser M B. 2011. The function of nonlinear phenomena in meerkat alarm calls. Biology Letters, 7(1):47.
    Titze I, Riede T, Popolo P. 2008. Nonlinear source-filter coupling in phonation: vocal exercises. The Journal of the Acoustical Society of America, 123(4):1902–1915.
    Wilden I, Herzel H, Peters G, et al. 1998. Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics: the International Journal of Animal Sound and its Recording, 9(3): 171–196.
    Xu J, Gooler D M, Feng A S. 1996. Effects of sound direction on the processing of amplitude-modulated signals in the frog inferior colliculus. Journal of Comparative Physiology A, 178(4):435–445.
    Zhang F, Chen P, Chen Z, et al. 2015. Ultrasonic frogs call at a higher pitch in noisier ambiance. Current Zoology, 61(6):996–1003.
    Fang Z, Juan Z, Feng A S, et al. 2017. Vocalizations of female frogs contain nonlinear characteristics and individual signatures. PLoS One, 12(3):e0174815.
    张亢亢, 林洪军, 刘颖. 2015. 大足鼠耳蝠交流声波非线性现象. 动物学杂志, 50(6):830–838.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王生,刘姝文,汪金梅,包家辉,张方.2020.非线性鸣声对雄性凹耳蛙应答的影响.动物学杂志,55(1):37-43.

复制
文章指标
  • 点击次数:1063
  • 下载次数: 1333
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-08-11
  • 最后修改日期:2020-01-02
  • 录用日期:2020-01-02
  • 在线发布日期: 2020-03-03