肠道气泡堆积对银鲳肠道菌群结构的影响
作者:
作者单位:

1.中国水产科学研究院东海水产研究所 农业农村部东海渔业资源开发利用重点实验室 上海 200090;2.上海海洋大学水产与生命学院 上海 201306

基金项目:

现代农业(海水鱼)产业技术体系专项资金(No. CARS-47-G25),中央级公益性科研院所基本科研业务费(No. 2420-2019)


Effect of the Intestinal Gas Bubble Accumulation on Intestinal Bacterial Communities in Silver Pomfret
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究肠道气泡堆积对银鲳(Pampus argenteus)肠道菌群的影响,2019年3月于东海水产研究所福鼎研究中心采集了15尾肠道气泡堆积的银鲳为病鱼组,15尾健康银鲳为健康鱼组,并通过16S rDNA基因DNA高通量测序技术结合LEfSe分析方法,对两组样品间菌群结构和多样性进行对比分析。结果显示,病鱼组肠道菌群多样性与健康鱼组无显著差异(P > 0.05),但病鱼组肠道菌群的均匀度和相对丰度都显著低于健康鱼组(P < 0.05)。两组样品的优势菌群均为变形菌门(Proteobacteria),且相对丰度都较大(超过97%)。此外,利用LEfSe分析两组样品发现,病鱼组中如根瘤菌(Rhizobium)、栖热菌(Thermus)等好氧菌丰度显著高于健康鱼组,而不动肝菌(Acinetobacter)、微酸菌(Ilumatobacter)等显著低于健康鱼组,蓝细菌(Cyanobacteria)相对丰度显著高于健康鱼组。由此可以表明,肠道气泡堆积很可能会引发肠道菌群紊乱。

    Abstract:

    Silvery pomfret (Pampus argenteus) is a kind of valuable economic fish species and the intestinal gas bubble accumulation is an important factor that hinders its popularization. In order to evaluate the changes of the bacterial communities in Silvery pomfret’s intestine upon gas bubble accumulation occurrence, 15 diseased fish were chosen as the diseased group and 15 healthy fish as the healthy group. The method of high-throughput sequencing of 16S rDNA gene’s V3-V4 region was used to determine diversity and composition of bacterial communities in each of these samples. The comparison results of the Alpha diversity index showed that there was no significant difference in the Simpson index and the Shannon index between these two groups (P > 0.05), but the Chao1 estimator and the ACE estimator in the diseased group are significantly lower than those of the healthy group (P < 0.05) (Table 1). The analysis of the microbiota structure showed that the dominant bacterial groups were similar in the diseased and control groups, at the phylum level being Proteobacteria, and at the genus level being Sphingobium, Sphingomonas, Cupriavidus, Novo sphingobium and Acinetobacter (Table 2). From the above results, it can be concluded that the intestinal gas bubble accumulation reduces the richness and evenness of intestinal flora of Silvery pomfret, but does not affect its diversity. In addition, the two groups of samples were analyzed by LEfSe and the results showed that the relative abundance of aerobic bacteria such as agrobacterium bacteria, thermophilic bacteria, cyanobacteria, rhizobial bacteria in the diseased group was significantly higher than that of the healthy group, while the relative abundance of acinetobacter and microacidic bacteria was significantly lower than that of the healthy group (Fig. 3 and Fig. 4 ). From these results, it can be concluded that the intestinal gas bubble accumulation may cause intestinal flora disorder.

    参考文献
    Bouck G R. 1980. Etiology of gas bubble disease. Transactions of the American Fisheries Society, 109(6): 703–707. Caporaso J G, Kuczynski J, Stombaugh J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336. De Santis T Z, Hugenholtz P, Larsen N, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7): 5069–5072. Dennis K L, Wang Y, Blatner N R, et al. 2013. Adenomatous polyps are driven by microbe-instigated local inflammation and are controlled by IL-10-producing T cells. Cancer Research, 73(19): 5905–5913. Dhanasiri A K S, Brunvold L, Brinchmann M F, et al. 2011. Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. Upon Captive Rearing. Microbial Ecology, 61(1): 20–30. Edgar R C. 2010. Search and clustering orders of magnitude faster than blast. Bioinformatics, 26(19): 2460. Espmark ? M, Baeverfjord G. 2009. Effects of hyperoxia on behavioural and physiological variables in farmed Atlantic salmon (Salmo salar) parr. Aquaculture International, 17(4): 341–353. Hughes E R, Winter M G, Duerkop B A, et al. 2017. Microbialrespiration and formate oxidation as metabolic signaturesof inflammation- associated dysbiosis. Cell Host & Microbe, 21(2): 208–219. Jia J, Chen Q, Lauridsen T. 2016. A systematic investigation into the environmental fate of microcystins andthe potential risk: study in Lake Taihu. Toxins, 8(6): 170. Kang H S, Sturdy M, Krunic A, et al. 2012. Minutissamides E-L, antiproliferative cyclic lipodecapeptides from the cultured freshwater cyanobacterium cf. Anabaena sp. Bioorganic and Medicinal Chemistry, 20(20): 6134–6143. Kramer D L. 1987. Dissolved-oxygen and fish behavior. Environmental Biology of Fishes, 18(2): 81–92. Li T, Long M, Gatesoupe F J, et al. 2015. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microbial Ecology, 69(1): 25–36. Nayak S K. 2010, Role of gastrointestinal microbiota in fish. Aquaculture Research, 41(11): 1553–1573. Roeselers G, Mittge E K, Stephens W Z, et al. 2011. Evidence for a core gut microbiota in the zebrafish. The ISME Journal, 5(10): 1595–1608. Segata N, Izard J, Waldron L, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6): 1–18. Suo Y, Li E, Li T, et al. 2017. Response of gut health and microbiota to sulfide exposure in Pacific whiteshrimp Litopenaeus vannamei. Fish and Shellfish Immunology, 63(4): 87–96. Wang Q, Garrity G M, Tiedje J M, et al. 2007. Na?ve bayesian classifier for rapid assignment of r RNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16): 5261–5267. Wang Y, Wang B, Liu M, et al. 2018. Aflatoxin B1 (AFB1) induced dysregulation of intestinal microbiota and damage of antioxidant system in pacific white shrimp (Litopenaeus vannamei). Aquaculture, 495(15): 940–947. 何远法, 迟淑艳, 谭北平, 等. 2017. 酵母培养物对凡纳滨对虾肠道菌群结构的影响. 广东海洋大学学报, 37(4): 21–27. 洪伟. 2010. 腾冲热海栖热菌噬菌体分离及其特征研究. 昆明: 昆明理工大学硕士学位论文, 4–7. 贾慧茹, 王星, 周婷. 2014. 蜜蜂肠道微生物研究概况. 动物医学进展, 35(4): 116–121. 刘增新, 柳学周, 史宝, 等. 2017. 牙鲆仔稚幼鱼肠道菌群结构比较分析. 渔业科学进展, 38(1): 111–119. 孟晓林, 李文均, 聂国兴, 等. 2019. 鱼类肠道菌群影响因子研究进展. 水产学报, 43(1): 143–155. 米海峰, 孙瑞健, 张璐, 等. 2015. 鱼类肠道健康研究进展. 中国饲料, (15): 19–22. 彭天辉. 2013. 自然及人工条件下大口黑鲈慢性气泡病的病因及病理研究. 上海: 上海海洋大学硕士学位论文, 3–14. 单辉辉, 李正, 韩素贞. 2013. 两株藏南地区土壤根瘤菌分类地位的确定. 生物技术通报, 25(4): 158–166. 史为良. 1987. 冰下溶氧过高引起亲鱼气泡病一例. 淡水渔业, 17(6): 41–42. 舒青龙, 封勇, 左爱仁, 等. 2015. 梯度稀释及微量点样法在环境γ-变形菌分离中的应用. 生物技术, 25(3): 281–300. 田丹丹, 宋修鹏, 蒋承健, 等. 2011. 1株甲基杆菌Methylobacterium sp.WGM16的鉴定及降解甲醇的最佳培养条件. 微生物学杂志, 31(1): 28–33. 谢水祥. 2014. 医学微生物学. 北京: 中国医药科技出版社, 120–121. 尹军霞, 林德荣. 2004. 肠道菌群与疾病. 生物学通报, 39(3): 26–28. 尹有宽, 翁心华. 1999. 不动杆菌属细菌感染的临床表现. 中国实用内科杂志, 19(02): 7–8. 郁维娜, 戴文芳, 陶震, 等. 2018. 健康与患病凡纳滨对虾肠道菌群结构及功能差异研究. 水产学报, 42(3): 399–409. 张正, 廖梅杰, 李彬, 等. 2014. 两种疾病发生对养殖半滑舌鳎肠道菌群结构的影响分析. 水产学报, 38(9): 1565–1572. 郑元甲, 陈雪忠, 程家骅, 等. 2003. 东海大陆架生物资源与环境. 上海: 上海科学技术出版社, 379–388. 朱文根, 李星浩, 饶刘瑜, 等. 2019. 感染草鱼呼肠孤病毒对肠道菌群多样性的影响. 水生生物学报, 43(1): 113–120.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑迪,王倩,王磊,施兆鸿,彭士明.2020.肠道气泡堆积对银鲳肠道菌群结构的影响.动物学杂志,55(2):247-255.

复制
文章指标
  • 点击次数:1277
  • 下载次数: 1178
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-10-12
  • 最后修改日期:2020-03-13
  • 录用日期:2020-03-12
  • 在线发布日期: 2020-04-21