急性低温对黑鲷抗氧化酶活性和 热休克蛋白含量的影响
作者:
作者单位:

1.水产科学国家级实验教学示范中心,上海海洋大学 上海 201306;2.江苏省海洋水产研究所 南通 226007

基金项目:

江苏省第五期“333工程”科研项目(BRA2020372),江苏省农业重大新品种创制项目(No. PZCZ201744),南通市基础科学研究计划项目(No. JC2019056),江苏省自然科学基金项目(No. BK20181202),江苏省水产良种保种及更新项目(No. 2019-SJ-006-3)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究急性低温胁迫对黑鲷(Acanthopagrus schlegelii)生理机能的影响,以1龄黑鲷作为实验鱼,以15 ℃为对照组,设置10 ℃和5 ℃作为低温胁迫组,处理24 h后再转入15 ℃的水体中进行恢复实验,测定不同温度、不同时间点下1龄黑鲷肝的抗氧化酶活性以及热休克蛋白(Hsp)含量的变化。研究结果显示,低温胁迫实验中,低温处理组(10 ℃和5 ℃)在急性低温胁迫的24 h内,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)活性和热休克蛋白含量均呈现先上升后下降的趋势。10 ℃处理组上述三种抗氧化酶活性皆在12 h达到最大值,超氧化物歧化酶、过氧化氢酶活性24 h恢复到对照水平,而谷胱甘肽过氧化物酶在18 h已经恢复到正常水平;在5 ℃处理组,超氧化物歧化酶和过氧化氢酶活性在6 h达到最大值,谷胱甘肽过氧化物酶在18 h达到最大值,且在24 h都仍与对照组有极显著差异,超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶活性分别在恢复实验的12 h、12 h和6 h恢复到对照组水平。10 ℃和5 ℃两个处理组的热休克蛋白含量皆在胁迫18 h达到最大,10 ℃处理组在24 h恢复到正常水平,但5 ℃处理组的热休克蛋白含量直到恢复实验结束仍与对照组存在差异。本实验结果表明,急性低温胁迫对超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和热休克蛋白具有显著影响,其均呈现有规律的变化趋势,说明上述酶和蛋白参与了黑鲷的低温胁迫应答过程,通过协同调节黑鲷的生理机能使其适应环境变化,减少急性低温对鱼体的损伤并使其能够在环境骤变情况下存活下来。只有在自我调节范围内,黑鲷随着胁迫时间的延长,其体内才能够建立新的生理平衡来适应低温,因此在黑鲷养殖过程中,应当注意水温不宜低于5 ℃,水温过低时,应尽快将其移入室内,避免水温骤降对鱼体造成损伤。

    Abstract:

    In order to investigate the effects of acute low temperature stress on physiological functions of Black Porgy (Acanthopagrus schlegelii), one-year-old black porgies were used in the experiment. With 15 ℃ as the control group, 10 ℃ and 5 ℃ as the low temperature stress test groups, all test groups were moved to 15 ℃ water for recovering after 24 h treatment. We measured the activities of antioxidant enzymes and heat shock protein content in the liver of Black Porgy at different temperatures. The results show that under the low temperature stress, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GSH-PX) and heat shock protein content gradually increased in the beginning and then decreased. The antioxidant enzyme activity of the 10 ℃ test group reached the maximum at 12 h, the SOD and CAT activities returned to the normal level after 24 h, and GSH-PX returned to the normal level at 18 h (P > 0.05). In the 5 ℃ test group, the SOD and CAT activities reached the maximal value at 6 h, GSH-PX reached the maximal value at 18h, but there were still significant differences between the test group and the control group at 24 h (P < 0.01). The activities of SOD, CAT and GSH-PX were respectively back to the control group level at 12 h, 12 h and 6 h of recovery (Fig. 1﹣3). The heat shock protein content of the two test groups reached the maximum at 18 h, and the 10 ℃ test group returned to a normal level at 24 h (P > 0.05), but the heat shock protein content of the 5 ℃ test group didn’t return to a normal level until the end of the recovery experiment (P < 0.05, Fig.4). The results of this experiment show that the activities of SOD, CAT, GSH-PX and content of heat shock protein are largely affected by the acute low temperature stress, and the regular changes of the above enzymes and protein show that they are involved in low temperature stress response and physiological function adjustment to adapt to environmental changes, reducing the acute low temperature damage to the fish body, which also enables the fish to survive during sudden environmental changes. Only within the range of self-regulation, the Black Porgy can make a new physiological balance to adapt to the low temperature with the extension of stress time. Therefore, during the Black Porgy breeding process, it should be noted that the water temperature should not be lower than 5 ℃; when the water temperature is too low, it should be moved into the room as soon as possible to avoid the damage of sudden water temperature drop.

    参考文献
    Bond U, Schlesinger M J. 1987. Heat shock Proteins and development. Advance in Genetics, 24: 1–29. Cheng H L, Xia D Q, Wu T T. 2005. Advancement in research one effect of nutrition on cold resistance in fish. Fisheries Science, 24(9): 41?44. Engelsma M Y, Hougee S, Nap D, et al. 2003. Multiple acute temperature stress affects leucocyte population and antibody responses in common carp, Cyprinus carpio. Fish & Shellfish Immunology, 15(5): 397–410. Fetzer W W, Brooking T E, Jackson J R, et al. 2011. Overwinter mortality of gizzard shad: Evaluation of starvation and cold temperature stress. Transactions American Fisheries Society, 140(6): 1460?1471. Kai L, Xia C, Liu W, et al. 2017. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (St?l): Its response to temperature and insecticide stresses. Pesticide Biochemistry and Physiology, 142: 102–10. Martínez-álvarez R M, Morales A E, Sanz A. 2005. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15(1): 75–88. Nordberg J, Arnér E S J. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine, 31(11): 1287–1312. Parihar M S, Javeri T, Hemnani T, et al. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 22(2): 151–156. Pascual P, Pedrajas J R, Toribio F, et al. 2003. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chemico-Biological Interactions, 145(2): 191. Wang W N, Wu J, Su S J. 2008. Effects of salinity stress on antioxidant enzymes of Penaeus monodon of two different life stages. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148(4): 466. Yamamoto Y, Kume M, Yamaoka Y. 1998. Implications of heat shock proteins during liver surgery and liver perfusion. Recent Results in Cancer, 147: 157–172. 管敏, 张厚本, 王龙, 等. 2018. 急性低温胁迫对史氏鲟幼鱼抗氧化和免疫指标的影响. 淡水渔业, 48(6): 17–22. 郭鹤. 2019. 温度驯化对齐口裂腹鱼热耐受和生长代谢的影响. 重庆: 西南大学硕士学位论文, 13–22. 樊欣, 彭仁. 2019. 热休克蛋白70: 生物学功能与作用机制研究进展. 生命科学, 31(3): 270–278. 刘奇奇. 2017. 操作及低温胁迫对四指马鲅幼鱼组织结构和抗氧化系统的影响. 上海: 上海海洋大学硕士学位论文, 41–58. 罗胜玉, 徐冬冬, 楼宝, 等. 2017. 低温胁迫对黄姑鱼(Nibea albiflora)抗氧化酶、Na+/-K+-ATP酶及Hsp70蛋白含量的影响. 海洋通报, 36(2): 189–194. 刘玲, 陈超, 李炎璐, 等. 2018. 短期温度胁迫对驼背鲈(♀) × 鞍带石斑鱼(♂) 杂交子代幼鱼抗氧化及消化酶活性的影响. 渔业科学进展, 39(2): 59–66. 宁军号, 秦宇博, 胡伦超, 等. 2017. 水温骤降和缓降胁迫对褐篮子鱼血液生理生化指标的影响. 大连海洋大学学报, 32(3): 294–301. 彭国干. 2015. 达氏鳇热休克蛋白70和90基因的克隆及其对温盐胁迫的响应. 大连: 大连海洋大学硕士学位论文, 50–53. 宋志明, 刘鉴毅, 庄平, 等. 2015. 低温胁迫对点篮子鱼幼鱼肝脏抗氧化酶活性及丙二醛含量的影响. 海洋渔业, 37(2): 142–150. 王美垚. 2009. 急性低温胁迫及恢复对吉富罗非鱼血清生化、免疫以及应激蛋白Hsp70基因表达的影响. 南京: 南京农业大学硕士学位论文, 32–40. 吴仁协, 刘静, 樊冀蓉, 等. 2011. 黑棘鲷的命名和分类地位探究. 海洋科学, 35(5): 117–119. 徐恭昭, 郑澄伟. 1987. 海产鱼类养殖与增殖. 济南: 山东科学技术出版社, 348–350.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈自强,张志伟,张志勇,祝斐,贾超峰,孟乾,曹广勇,林志杰.2020.急性低温对黑鲷抗氧化酶活性和 热休克蛋白含量的影响.动物学杂志,55(6):784-792.

复制
文章指标
  • 点击次数:964
  • 下载次数: 1314
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-01-17
  • 最后修改日期:2020-10-27
  • 录用日期:2020-10-26
  • 在线发布日期: 2020-12-08