8周有氧运动对肥胖大鼠消化道嗜银 细胞形态及分布密度的影响
作者:
作者单位:

哈尔滨师范大学体育科学学院 哈尔滨 150025

基金项目:

哈尔滨师范大学硕士研究生创新科研项目(No. HSDSSCX2020-35)


Effects of 8 -Week Aerobic Exercise on the Morphology and Distribution Density of Argyrophilic Cells in the Digestive Tract of Obese Rats
Author:
Affiliation:

①Harbin School of physical Education Science,Harbin normal University 150025

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了研究有氧运动对肥胖大鼠(Rattus norvegicus)消化道嗜银细胞形态及分布密度的影响,本实验采用Grimelius银染法观察8周运动组(n = 9)与对照组(n = 9)肥胖大鼠消化道嗜银细胞形态及分布密度。结果显示,大鼠消化道各部位均有嗜银细胞分布;两组大鼠消化道嗜银细胞形态上无差异,均以圆形、椭圆形、锥体形、梭形为主;两组大鼠消化道嗜银细胞分布密度高峰均位于胃体,而低谷有所不同,对照组大鼠消化道嗜银细胞的分布密度低谷位于食管、贲门,运动组大鼠位于食管、贲门、空肠、回肠、直肠;两组相比,食管和直肠两部位分布密度差异不显著(P > 0.05),其余各部位均有差异,且运动组大鼠贲门、胃体、盲肠、结肠嗜银细胞分布密度极显著低于对照组(P < 0.01),幽门、空肠嗜银细胞分布密度极显著高于对照组(P < 0.01),运动组十二指肠、回肠嗜银细胞分布密度显著高于对照组(P < 0.05)。两组动物嗜银细胞分泌密度的这种改变与动物机体所处不同生理状态以及消化道各部位功能有关。

    Abstract:

    This experiment was designed to observe the changes in morphology and distribution density of argyrophilic cells in digestive tract of obese rats (Rattus norvegicus) after 8-week exercise by Grimelius silver staining. Rats in exercise group did an 8-week aerobic exercise on the treadmill. SPSS 25.0 and Duncan’s multiple range test were applied to make a statistical analysis of the argyrophilic cells in digestive tract of obese rats from the exercise group and the control group. An independent sample T was applied to test the distribution density of the argyrophilic cells in the same part of the digestive tract of the two groups. The results showed that argyrophilic cells distributed in all parts of digestive tract of rats (Fig. 1), mainly in the form of round, oval, cone and fusiform (Table 4). The highest distribution density of argyrophilic cells in gastrointestinal tract of the two groups was in body of stomach (Table 3). The density of argirophilic cells in the body of stomach in the control group was 112.30 ± 13.42, while that in the exercise group was 98.15 ± 12.53. The distribution density of argyrophilic cells in digestive tract of the control group reached its lowest point in oesophagus and cardia, while in the exercise group that occurred in oesophagus, cardia, jejunum, ileum and rectum. Compared with the control group, distribution density in esophagus and rectum in exercise group was not significantly different (P > 0.05), while there was significant difference in the other parts. The distribution densities of argyrophilic cells in cardia, body of stomach, cecum and colon in the exercise group were significantly lower than in the control group (P < 0.01). The distribution densities of argyrophilic cells in the esophagus and rectum in the exercise group were significantly higher than in the control group (P < 0.01). The distribution densities of argyrophilic cells in the duodenum and ileum in the exercise group were significantly higher than in the control group (P < 0.05). There was no difference in the distribution density of argyrophilic cells in the esophagus and rectum between the two groups (P > 0.05). The changes in the distribution density of argyrophilic cells in the two groups are related to different physiological states and the functions of various parts of digestive tract.

    参考文献
    Ahlman H, Nilsson O. 2001. The gut as the largest endocrine organ in the body. Annals of Oncology, 12(Suppl 2): 63–68. Basile D R S, Novaes R D, Marques D C S, et al. 2012. Analysis of the morphology and distribution of argentaffin, argyrophil and insulin-immunoreactive endocrine cells in the small intestine of the adult opossum Didelphis aurita (Wied-Neuwied, 1826). Tissue & Cell, 44(5): 301–307. Chandler P C, Viana J B, Oswald K D, et al. 2005. Feeding response to melanocortin agonist predicts preference for and obesity from a high-fat diet. Physiology & Behavior, 85(2): 221–230. Sartori S S R, Peixoto J V. Lopes V D P G, et al. 2018. Neuroendocrine structures of the small intestine of the capybara Hydrochoerus hydrochaeris (Mammalia, Rodentia). Animal Biology. 68(1): 89–104. Wang J X, Peng K M, Liu H Z, et al. 2010. Distribution and morphology of argyrophilic cells in the digestive tract of the African ostrich. Tissue and Cell, 42(1): 65–68. 曹悦, 孙明翰, 李淑兰, 等. 2018. 加卡利亚仓鼠消化道嗜银细胞的分布和形态学观察. 黑龙江畜牧兽医, (9): 187–188, 191, 251. 常保荣, 王小梅. 2016. 有氧运动对老年大鼠胃肠动力及血清中胃促生长素、瘦素水平的影响. 中国应用生理学杂志, 32(4): 331–333. 邓孔昭. 1980. 胃肠道内分泌细胞及其激素. 生理科学进展, 11(2): 113–119. 方福德. 1995. 现代医学实验技巧全书. 北京: 北京医科大学、中国协和医科大学联合出版社, 51–52. 付雪枫, 张志强. 2011. 禁食对东方蝾螈胃肠道嗜银细胞形态和分布密度的影响. 动物学杂志, 46(2): 114–119. 郭啸华, 刘志红, 李恒, 等. 2002. 高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点.中国糖尿病杂志, 10(5): 290–294. 华子暄, 高歌, 赵文阁, 等. 2014. 饥饿对胎生蜥蜴消化道嗜银细 胞形态和分布密度的影响. 黑龙江畜牧兽医, (3): 155–156, 159, 211. 黄威权, 黄荫乔, 王文超, 等. 1985. 大鼠小肠嗜银、亲银细胞的分布及形态学观察. 解剖学报, 16(4): 412–416, 457. 李家洲, 李桂芬, 贺华丽, 等. 2009. 版纳鱼螈消化道解剖学和组织学观察. 动物学杂志, 44(6): 96–102. 李沛, 何敏, 郭红瑞, 等. 2012. 中国黄羽鹌鹑消化道嗜银细胞胚后发育的分布及形态学观察. 动物学杂志, 47(5): 101–109. 李淑兰, 孙庆玲. 1997a. 小鼠胃肠道嗜银细胞的分布及形态学观察. 生物技术, 7(4): 27–29, 41. 李淑兰, 吴恒梅. 1997b. 中华大蟾蜍消化道嗜银细胞的分布及形态学观察. 生物技术, 7(1): 23–25, 28. 马雪泷, 唐鑫生, 吴仁红, 等. 2012. 凹耳蛙消化道组织学和嗜银细胞形态观察. 动物学杂志, 47(1): 9–15. 牛鑫鑫, 金晨晨, 咸振飞, 等. 2013. 北方狭口蛙消化道嗜银细胞的分布与形态. 四川动物, 32(2): 246–249. 热汗古丽·依马尔, 李淑兰, 陶建雄, 等. 2019. 禁食对豚鼠消化道嗜银细胞形态及分布密度的影响. 黑龙江畜牧兽医, (7): 136–138. 任春宇, 曹雷, 李淑兰, 等. 2011. 极北鲵与东北小鲵消化道嗜银细胞的比较. 中国农学通报, 27(11): 46–49. 王春蕾, 王冰莹, 张婷婷, 等. 2015. 麻雀(Passer montanus)消化道嗜银细胞的分布及形态学观察. 黑龙江畜牧兽医, (5): 190–191, 236. 王鸽, 李洋洋, 李淑兰. 2016. 饥饿对小鼠胃肠道嗜银细胞形态和分布密度的影响. 黑龙江畜牧兽医, (12): 207–209, 300. 徐梅婷, 李淑兰, 刘玉玲, 等. 2019. 禁食对东方铃蟾消化道嗜银细胞形态及分布密度的影响. 黑龙江畜牧兽医, (7): 133–135, 172. 于萍, 李淑兰. 2016. 黑龙江草蜥(Takydromus amurensis)消化道嗜银细胞的研究. 黑龙江畜牧兽医, (4): 226–228, 290. 曾霞娟, 刘家鹏, 严梅娣, 等. 2011. 膳食纤维对胃肠道作用的研究进展. 微量元素与健康研究, 28(1): 52–55, 59. 张盛周, 陈冬生, 张志强, 等. 2001. 无斑肥螈消化道五羟色胺免疫活性细胞的分布与形态学观察. 动物学杂志, 36(3): 13–16. 张志强, 吴孝兵. 2010. 爬行类消化道5-羟色胺细胞免疫组化研究进展. 中国组织化学与细胞化学杂志, 19(5): 508–511.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张敏军,陈霞.2020.8周有氧运动对肥胖大鼠消化道嗜银 细胞形态及分布密度的影响.动物学杂志,55(6):752-759.

复制
文章指标
  • 点击次数:816
  • 下载次数: 1259
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-03-01
  • 最后修改日期:2020-10-14
  • 录用日期:2020-10-12
  • 在线发布日期: 2020-12-08