利用小型无人机监测西洞庭湖 水鸟的可行性探讨
作者:
基金项目:

国家级大学生创新创业训练计划项目(No. G201910022068)


The Feasibility of Wetland Waterfowl Monitoring Method Based on UAV Remote Sensing
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统鸟类监测方法具有调查时间长、人力物力消耗大、调查结果不准确的局限。近年来,无人机遥感技术在生态学领域的应用日益广泛,但在鸟类调查上仍缺乏成熟的技术方法。本研究于2019年11月19至25日期间,使用搭载可见光相机的小型多旋翼无人机大疆Mavic 2行业变焦版,在湖南西洞庭湖国家级自然保护区内的四个水鸟集群分布区域划定监测样区,规划航线,设定合适的飞行和拍摄参数后采集遥感数据。根据水鸟对无人机的反应程度划分不同的惊扰等级,记录拍摄过程中鸟类受惊扰情况。利用图像拼接软件PTGui Pro 11.0,对采集到的影像进行拼接、匀色等解译预处理操作。对合成后的遥感影像建立水鸟分类标注表,进行人工解译,并对调查过程中的水鸟惊扰情况进行统计分析。本研究共进行11次飞行调查,获取10个样区数据,最大样区面积约为18 hm2,75 m飞行高度下影像分辨率为0.012 m/像素,对样区内6种体型较大的水鸟——苍鹭(Ardea cinerea)、大白鹭(A. alba)、小天鹅(Cygnus columbianus)、凤头麦鸡(Vanellus vanellus)、绿翅鸭(Anas crecca)和罗纹鸭(Mareca falcata)进行了分类和计数。绿翅鸭和罗纹鸭二者依靠遥感图像无法区分,其余4种拍摄到的水鸟均成功解译和计数。惊扰等级记录显示,本次无人机调查对水鸟的惊扰程度较弱。结果表明,基于搭载可见光相机的小型无人机对湿地大型和中型水鸟进行快速遥感调查监测具有一定的可行性,在湖泊湿地类型的鸟类调查中具有应用潜力;通过选择合适的飞行平台,设定适当的飞行高度、飞行速度和图像重叠度等参数,能够在保证解译结果准确性的同时,避免对水鸟的过度干扰。

    Abstract:

    Traditional bird monitoring methods have the limitations of long investigation time, large consumption of manpower and material resources, as well as inaccurate identifications. In recent years, unmanned aerial vehicle (UAV) remote sensing technology has been widely used in the field of ecology, however, it is still a lack of developed methods for its application in bird survey. In this study, a micro-UAV (DJI Mavic 2) equipped with a visible light camera was used to conduct a waterfowl survey in the West Dongting Lake National Nature Reserve in Hunan Province. Four survey areas were selected inside the reserve where the target species were concentrated. With flight routes in each area planned and the flight and shooting parameters set appropriately, remote sensing data were collected (Fig. 1). Meanwhile, the birds’ response to the disturbance caused by the shooting process was ranked and recorded (Table 1). Subsequently, the image splicing software PTGui Pro 11.0 was employed to splice the collected images and adjusted their color balance. Finally, based on the synthesized remote sensing image, the classification and annotation table of waterfowl was established and the waterfowl in the image were manually interpreted. Also, the disturbance ranks of the investigation to the waterfowl was analyzed statistically. We conducted 11 flights in this study, of which the largest flight sites had an area of 18 hm2 and the resolution of 0.012 m/pixel at the flight altitude of 75 m. We successfully obtained data from ten survey flights. We tried to identify and count, in our obtained images, six main waterfowl species with relatively large body size: Ardea alba, A. cinerea, Anas crecca, Mareca falcata, Cygnus columbianus and Vanellus vanellus (Table 2, Fig. 2). The results showed that the four target species can be identified and counted accurately with the remote sensing images, however, the A. crecca and M. falcata could not be distinguished from each other. Alarm rating records show that the drone investigation had a minor impact on waterfowl. In conclusion, it is feasible to conduct rapid remote sensing monitoring of large and medium sized waterfowl in wetland based on micro-UAV equipped with visible light cameras. In order to achieve relatively higher accuracy of interpretation and prevent excessive interference to waterfowl at the same time, parameters such as flight altitude, flight speed and image overlap need to be set appropriately.

    参考文献
    Anderson K, Gaston K J. 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3): 138–146. Bech-Hansen M, Kallehauge R M, Lauritzen J M S, et al. 2020. Evaluation of disturbance effect on geese caused by an approaching unmanned aerial vehicle. Bird Conservation International, Cambridge University Press, 30(2): 169–175. Chabot D. 2009. Systematic Evaluation of a Stock Unmanned Aerial Vehicle (UAV) System for Small-Scale Wildlife Survey Applications. McGill University, 40–54 Di?az-Delgado R, Man?ez M, Marti?nez A, et al. 2017. Using UAVs to map aquatic bird colonies // Diaz-Delgado R, Lucas R, Hurford C. The Roles of Remote Sensing in Nature Conservation. 277–291. Hodgson J C, Baylis S M, Mott R, et al. 2016. Precision wildlife monitoring using unmanned aerial vehicles. Scientific Reports, Nature Publishing Group, 6(1): 22574. Iv G, Pearlstine L, Percival H. 2006. An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin, 34(3): 750–758. Kingsford R T, Curtin A L, Porter J. 1999. Water flows on Cooper Creek in arid Australia determine ‘boom’ and ‘bust’ periods for waterbirds. Biological Conservation, 88(2): 231–248. McEvoy J F, Hall G P, Mcdonald P G. 2016. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition. PeerJ, 4: e1831. Mulero-Pazmany M, Jenni-Eiermann S, Strebel N, et al. 2017. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS One, 12(6): e0178448. Oosthuizen W C, Kruger L, Jouanneau W, et al. 2020. Unmanned aerial vehicle (UAV) survey of the Antarctic shag (Leucocarbo bransfieldensis) breeding colony at Harmony Point, Nelson Island, South Shetland Islands. Polar Biology, 43(2): 187–191. Shafer M W, Vega G, Rothfus K, et al. 2019. UAV wildlife radiotelemetry: System and methods of localization. Methods in Ecology and Evolution, 10(10): 1783–1795. Wilson A M, Barr J, Zagorski M, et al. 2017. The feasibility of counting songbirds using unmanned aerial vehicles. The Auk, 134(2): 350–362. 翟昊, 于洪贤, 马国东, 等. 2019. 宁夏鸟类新纪录遗鸥繁殖群及其生境初探. 野生动物学报, 40(1): 196–199. 方小斌, 邹瑀琦, 丁长青. 2017. 鸟类惊飞距离及其影响因素. 动物学杂志, 52(5): 897–910. 郭凯迪, 张晓波, 刘培中, 等. 2020. 西洞庭湖沉水植物分布格局对环境因子及水文情势差异的响应. 湖泊科学, 32(6): 1736–1748. 郭庆华, 刘瑾, 李玉美, 等. 2016. 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 24(11): 1249–1266. 郭兴健, 邵全琴, 杨帆, 等. 2019. 无人机遥感调查黄河源玛多县岩羊数量及分布. 自然资源学报, 34(5): 1054–1065. 国家测绘局. 2010. 低空数字航空摄影规范. CH-Z 3005-2010. [S/OL]. [2020-11-21]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode= SCSD&dbname=SCSD&filename=SCSD000006154240&v=Oph4xQC%25mmd2BwrX9qv%25mmd2B%25mmd2Fqe4PPCBg%25mmd2B1c6t5wImtWYvz4fKCSjrpCzPrzdLpPiUiEy8hSzVrJc4SoFhDA%3d. 国家林业和草原局. 2019. 国家林业和草原局召开电视电话会议部署加强春季候鸟保护工作. [EB/OL]. (2019-03-14) [2020-08-15]. http://www.forestry.gov.cn/main/5904/20200115/105237032972504. html. 国家林业局调查规划设计院. 2017. 全国秋季迁徙水鸟同步调查 // 国家林业局. 中国林业年鉴2017. 北京: 中国林业出版社, 551. 韩峰, 刘昭, 刘伟, 等. 2017. 重叠度对无人机图像拼接效率的影响. 江苏农业科学, 45(12): 182–187. 胡健波, 彭士涛, 林宇. 2019. 一种开阔地区大群野生动物无人机调查方法. CN109902596A, 2019-06-18. [P/OL]. [2020-11-21]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2019&filename=CN109902596A&v=M5AJmqQDBwHZJg%25mmd2B%25mmd2FjaFeIetzjGsNN7Yyln0iVgs1fhg4YuaawdhqSrPy3d6PzhLW. 华南濒危动物研究所, 北京林业大学. 2011. 西洞庭湖自然保护区综合科学考察报告. 湖南. 黄娟琴. 2005. 杭州市区湿地资源遥感调查与监测研究. 杭州: 浙江大学硕士学位论文, 41–46. 纪伟涛, 曾南京, 易武生, 等. 1999. 鄱阳湖鹤类和大型水禽航空调查报告. 江西林业科技, (6): 23–28. 雷倩, 李金亚, 马克明. 2018. 遥感技术在鸟类生态学研究中的应用. 生物多样性, 26(8): 862–877. 李杰, 刘强. 2019. 无人机水禽监测模式的设立原则探讨. 热带地理, 39(4): 546–552. 刘宁. 1998. 野生动物数量调查方法综述. 云南林业科技, (2): 59–61. 罗巍, 邵全琴, 王东亮, 等. 2017. 基于面向对象分类的大型野生食草动物识别方法——以青海三江源地区为例. 野生动物学报, 38(4): 561–564. 宋清洁. 2018. 基于无人机的大型食草动物调查研究. 兰州: 兰州大学硕士学位论文, 1–11. 涂文姬, 杨启鸿, 刘波, 等. 2017. 滇池越冬水鸟同步调查研究. 林业调查规划, 42(6): 52–57. 王方, 郑璇, 马杰, 等. 2019. 无人机技术在中国野生亚洲象调查研究及监测中的应用. 林业建设, (6): 38–44. 王俊丽, 任世奇, 张忠华, 等. 2019. 基于文献计量评价的无人机生态遥感监测研究进展. 热带地理, 39(4): 616–624. 吴方明, 朱伟伟, 吴炳方, 等. 2019. 三江源大型食草动物数量无人机自动监测方法. 兽类学报, 39(4): 450–457. 奚水. 2016. 无人机低空拍鸟之类行为应当禁止. 中国摄影报, (3): 1. 许志宏. 2017. 基于航拍图像的拼接算法研究及其实现. 北京: 华北电力大学硕士学位论文, 1–5. 赵忠琴. 1982. 珍贵水禽的航空调查. 野生动物, (1): 55. 赵忠琴, 李金录, 冯科民. 1985. 大型水禽航空调查方法. 野生动物, (4): 25–27.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高大中,林海,林乐乐,崔国发.2021.利用小型无人机监测西洞庭湖 水鸟的可行性探讨.动物学杂志,56(1):100-110.

复制
文章指标
  • 点击次数:978
  • 下载次数: 1363
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-03-29
  • 最后修改日期:2021-01-04
  • 录用日期:2020-12-29
  • 在线发布日期: 2021-02-05