杀虫剂硫丹对中国虎纹蛙的毒性效应: 存活率、红细胞核异常及酶活性
作者:
作者单位:

丽水学院生态学院 丽水 浙江 323000

基金项目:

浙江省自然科学基金项目(No. LY19C040001,LQ20C030001),生态环境部生物多样性调查、观测和评估项目(No. ZDGC2019-008,XYDC20-04-01),丽水市重点研究项目(No. 202000407)


Toxic Effects of Insecticide Endosulfan on Chinese Tiger Frog (Hoplobatrachus chinensis): Survival, Erythrocyte Nuclear Abnormality and Enzyme Activity
Author:
Affiliation:

College of Ecology, Lishui University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    农药的使用对水生动物有直接和间接的影响。本文研究了有机氯杀虫剂硫丹对中国虎纹蛙(Hoplobatrachus chinensis)蝌蚪的毒性效应。具体而言,首先检测了硫丹的安全浓度(SC),并在急性毒性实验中评估了硫丹的毒性等级。然后检测了外周血液中红细胞核形态异常,并在慢性毒性实验中测定了酸性磷酸酶(ACP)、碱性磷酸酶(AKP)和乳酸脱氢酶(LDH)的活性。结果表明,在急性毒性中,随着硫丹溶液浓度的增加和染毒时间的延长,蝌蚪的平均死亡率显著增加,即蝌蚪存活率取决于农药剂量和染毒的时长。硫丹对中国虎纹蛙蝌蚪的96 h半致死浓度LC50值为23.38 μg/L,安全浓度为2.34 μg/L,为剧毒性农药。在血液红细胞核异常实验中,观察到5种不同类型的细胞核异常:核碎裂、双核、不等分裂、核凹陷和核空洞。血液红细胞核异常率与农药浓度呈正相关。在酶活性检测中,三种酶的活性均受硫丹浓度的影响。与对照组相比,酸性磷酸酶(ACP)和碱性磷酸酶(AKP)活性随硫丹浓度的增加而降低,乳酸脱氢酶(LDH)活性随着硫丹浓度的增加呈先升高后降低。研究结果表明,硫丹对中国虎纹蛙蝌蚪具有很高的毒性,并证明了血液红细胞核异常和特定的代谢酶可以作为环境监测的生物标志物。

    Abstract:

    The utilization of various agricultural pesticides has both direct and indirect effects on aquatic animals. The toxic effects of organochlorine insecticide endosulfan on tadpoles of the Chinese tiger frog (Hoplobatrachus chinensis) were investigated in this study. Specifically, we first examined the safe concentration (SC) and evaluated the toxic rank of endosulfan in an acute toxicity assay. We then examined the blood biomarker (erythrocyte nuclear abnormality) and determined the metabolic enzyme activitie of acid phosphatase (ACP), alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) in a chronic toxicity test. In terms of the acute toxicity, the average mortality percentage of tadpoles significantly increased with increasing concentrations and exposure duration of endosulfan solution, indicating dose- and time-dependent lethality of this drug (Table 1). The half lethal concentration (LC50 value) of endosulfan for H. chinensis tadpoles at 96 h was 23.38 μg/L and the safe concentration was 2.34 μg/L (Table 2). Five different types of erythrocyte nuclear abnormalities were observed: broken nucleus, binucleated, unequal division, karyopyknosis and anucleated (Fig. 1). The total frequencies of abnormal erythrocytes were positively correlated with pesticide concentrations (Table 3). Activities of all three enzymes were influenced. Compared with the control treatment, the activities of both ACP and AKP were decreased with increased endosulfan concentrations, while LDH activity was first increased and then decreased (Table 4). These findings suggest that endosulfan has a high toxicity for H. chinensis tadpoles and that the erythrocyte nuclear abnormality and particular metabolic enzymes may be considered as biomarkers for environmental monitoring.

    参考文献
    Anil P, Reddy P. 2017. Endosulfan induced oxidative stress in Tilapia mossambica. Life Sciences International Research Journal, 4(1): 209–214. Bernabà I, Brunelli E, Berg C, et al. 2008. Endosulfan acute toxicity in Bufo bufo gills: Ultrastructural changes and nitric oxide synthase localization. Aquatic Toxicology, 86(3): 447–456. Bernabó I, Guardia A, Machele M, et al. 2016. Effects of long-term exposure to two fungicides, pyrimethanil andtebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia). Aquatic Toxicology, 172(3): 56–66. Berrebbah N, Devaux A, Rouabhi R, et al. 2009. Micronucleus induction in erythrocytes of tadpole Rana saharica (green frog of North Africa) exposed to artea 330EC. American-Eurasian Journal of Toxicological Sciences, 1(1): 7–12. Bonin J, DesGrange J L, Rodrigued M, et al. 1997. Anuran species rochiness in agricultural land scapes of Quebec: foreseeing long-term results of road call surveys // Green D M. Amphibians in Decline: Canadian Studies of a Global Problem. St, Louis, Missouri: Society for the Study of Amphibians and Reptiles, 141–149. Bosch B, Manas F, Gorla N, et al. 2011. Micronucleus test in post metamorphic Odontophrynus cordobae and Rhinella arenarum (Amphibia: Anura) for environmental monitoring. Journal of Toxicology and Environmental Health Sciences, 3(6): 155–163. Campana M, Panzeri A, Moreno V, et al. 2003. Micronuclei induction in Rana catesbeiana tadpoles by the pyrethroid insecticide lambda-cyhalothrin. Genetics and Molecular Biology, 26(1): 99–103. Deno?l M, D'Hooghe B, Ficetola G F, et al. 2012. Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology, 21(4): 1240–1250. Devi N, Gupta A. 2013. Toxicity of endosulfan to tadpoles of Fejervarya spp. (Anura: Dicroglossidae): mortality and morphological deformities. Ecotoxicology, 22(9): 1395–1402. Dube P, Shwetha A, Hosetti B. 2014. Impact of copper cyanide on the key metabolic enzymes of freshwater fish Catlacatla catla (Hamilton). Biotechnology in Animal Husbandry, 30(3): 499–508. Ezemonye L, Tongo I. 2010. Acute toxic effects of endosulfan and diazinon pesticides on adult amphibians (Bufo regularis). Journal of Environmental Chemistry and Ecotoxicology, 2(5): 73–78. Fellers G, McConnell L, Pratt D, et al. 2004. Pesticides in mountain yellow-legged frogs (Rana muscosa) from the sierra nevada mountains of California, USA. Environmental Toxicology and Chemistry, 23(9): 2170–2177. Geng B, Yao D, Xue Q. 2005. Genotoxicity of the pesticide dichlorvos and herbicide butachlor in Rhacophorus megacephalus tadpole. Acta Zoologica Sinica, 51(3): 447–454. Gosner K L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3): 183–190. Guilherme S, Válega M, Pereira M, et al. 2008. Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicology and Environmental Safety, 70(3): 411–421. Huang T, Guo Q, Tian H, et al. 2014. Assessing spatial distribution, sources, and human health risk of organochlorine pesticide residues in the soils of arid and semiarid areas of northwest China. Environmental Science and Pollution Research, 21(9): 6124–6135. Inyang I, Daka E, Ogamba E. 2011. Effect of diazinon on acid and alkaline phosphatase activities in plasma and organs of Clarias gariepinus. Current Research Journal of Biological Sciences, 3(3): 191–194. Jones D, Hammond J, Relyea R. 2009. Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family-level sensitivity. Environmental Toxicology and Chemistry, 28(9): 1939–1945. Lajmanovich R, Cabagna M, Peltzer P, et al. 2005. Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles (Amphibia: Hylidae) exposed to insecticide endosulfan. Mutation Research, 587(1/2): 67–72. Lavorato M, Bernabò I, Crescente A, et al. 2013. Endosulfan effects on Rana dalmatina tadpoles: Quantitative developmental and behavioural analysis. Archives of Environmental Contamination and Toxicology, 64(2): 253–262. Leong K, Benjamin T, Mustafa A. 2007. Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66: 1153–1159. Menezes R, Qadir T, Moin A, et al. 2017. Endosulfan poisoning: An overview. Journal of Forensic and Legal Medicine, 51: 27–33. Mesléard F, Gauthier-Clerc M, Lambret P. 2016. Impact of the insecticide alphacypermetrine and herbicide oxadiazon, used singly or in combination, on the most abundant frog in French rice fields, Pelophylax perezi. Aquatic Toxicology, 176(7): 24–29. Oasman A, Abd-El Reheem A, Abuelfadl K, et al. 2010. Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Natural Science, 2(11): 1302–1311. Okolie N, Osagie A. 2000. Differential effects of chronic cyanide intoxication on heart, lung and pancreatic tissues. Food and Chemical Toxicology, 38(6): 543–548. Preud'homme V, Milla S, Gillardin V, et al. 2015. Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis. Chemosphere, 120(2): 357–364. Relyea R. 2009. A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia, 159(2): 363–376. Sánchez M, Sedó C, Chaufan G, et al. 2018. In vitro effects of endosulfan-based insecticides on mammalian sperm. Toxicology Research, 7(1): 117–126. Sangeetha S, Rani S. 2016. Enzymatic alterations in the fresh water fiddler crab, Uca triangularis exposed to endosulfan, chlorpyrifos and carbaryl. World Journal of Zoology, 11(2): 104–109. Strong R, Halsall C, Feren?ík M, et al. 2016. Biospectroscopy reveals the effect of varying water quality on tadpole tissues of the common frog (Rana temporaria). Environmental Pollution, 213: 322–337. Strong R, Martin F, Jones K, et al. 2017. Subtle effects of environmental stress observed in the early life stages of the common frog, Rana temporaria. Science Report, 7: 44438. Suneetha K. 2012. Effects of endosulfan and fenvalerate on carbohydrate metabolism of the freshwater fish, L. rohita (Ham). International Journal of Pharmacy and Pharmaceutical Sciences, 4(1): 262–268. Svartz G, Aronzon C, Coll C. 2016. Combined endosulfan and cypermethrin-induced toxicity to embryo-larval development of Rhinella arenarum. Journal of Toxicology and Environmental Health Part A, 79(5): 1–13. Svartz G, Wolkowicz H, Coll C. 2014. Toxicity of endosulfan on embryo-laval development of the south American toad Rhinella arenarum. Environmental Toxicology and Chemistry, 33(4): 875–881. Venturmo A, Rosenbaum E, De Casho AC, et al. 2003. Biomarkers of effect in toads and frogs. Biomarkers, 28(3/4): 167–186. Weber J, Halsall C, Muir D, et al. 2010. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Science of The Total Environment, 408(15): 2966–2984. Wei L, Ding G, Guo S, et al. 2015. Toxic effects of three heavy metallic ions on Rana zhenhaiensis tadpoles. Asian Herpetological Research, 6(2): 132–142. 陈娜, 郝家胜, 王莹, 等. 2007. 铜、铅、镉、锌、汞和银离子复合污染对水螅的急性毒性效应. 生物学杂志, 24(3): 32–35. 费梁, 叶昌媛, 江建平. 2012. 中国两栖动物及其分布彩色图鉴. 成都: 四川科学技术出版社. 唐婉琴, 张江惠, 袁伦强. 2018. 水体锰暴露对草鱼碱性磷酸酶、酸性磷酸酶及代谢率的影响. 重庆师范大学学报: 自然科学版, 35(3): 69–74. 韦力, 王海燕, 邵伟伟, 等. 2020. 葡萄糖和维生素C 对镇海林蛙蝌蚪生长及其三种酶活性的影响. 动物学杂志, 55(2): 229–237. 张云龙, 袁娟, 陈丽萍, 等. 2011. 三种重金属对鲫鱼苗的急性毒性和联合毒性试验. 河北渔业, 39(2): 24–27.
    相似文献
    引证文献
引用本文

邵伟伟,林植华,韦力.2020.杀虫剂硫丹对中国虎纹蛙的毒性效应: 存活率、红细胞核异常及酶活性.动物学杂志,55(5):583-592.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-11
  • 最后修改日期:2020-08-24
  • 录用日期:2020-08-20
  • 在线发布日期: 2020-10-13