投喂不同油脂饲料对中华绒螯蟹免疫、代谢及耐低氧性能的影响
作者:
基金项目:

国家自然科学基金项目(No.30871927),上海科技兴农推广项目(沪农科推字2009D2-1),国家农业转化基金项目(No.2009GB2C300156)


Effect of Dietary Lipid Sources on the Immune Function, Metabolism and Resistance to Hypoxia in Chinese Mitten Crab (Eriocheir sinensis)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究饲料中添加鱼油和豆油对中华绒螯蟹(Eriocheir sinensis)成蟹生长、免疫、代谢和耐低氧性能的影响,配制了添加不同比例鱼油和豆油的3种蟹用饲料,添加3%鱼油饲料组、3%豆油饲料组、3%鱼油和豆油混合组(1∶1,质量比),将其分别投喂中华绒螯蟹115 d后测量蟹体重、壳长和壳宽的变化,再将其放入溶解氧(dissolved oxygen, DO)为(9.06±0.06)mg/L和(2.57±0.44)mg/L的水体中,测定其免疫、代谢指标及耐低氧性能的变化。结果发现:投喂添加3种不同油脂饲料的中华绒螯蟹各组间体重无显著性差异;低氧胁迫对中华绒螯蟹代谢指标影响较大;添加鱼油和豆油混合油饲料组中华绒螯蟹血细胞密度、血蓝蛋白含量及超氧化物歧化酶、酸性和碱性磷酸酶、乳酸脱氢酶的活性都为最高,说明鱼油与豆油混合添加对中华绒螯蟹免疫和抗氧化能力有促进作用,并增加其耐低氧能力。

    Abstract:

    The objective of this study is to measure the effect of supplement of fish oil, soybean oil and fish and soybean mixture oil (1∶1) in diets on the growth, immune function, metabolism and resistance to hypoxia in Chinese Mitten Crab (Eriocheir sinensis). The three diets for adult crabs with 3% fish oil, 3% soybean oil and 3% mixture oil were prepared. These diets were used for feeding crabs for 115 days. Crab weights, lengths and widths were measured. And then the crabs were placed into normal DO level (9.06±0.06 mg/L) and hypoxia water (2.57±0.44 mg/L),and their immune and metabolic indices were measured. We found that the hypoxia stress evidently influenced the metabolism of crab. The weights of crab were not significantly affected by the variation of oil lipid in diets; the hemocyte count, hemocyanin content, the activities of SOD, ALP, ACP and LDH of the crab were the highest in the mixture oil group (1 ∶1), so the supplement of fish and soybean oil (1 ∶1) in diets evidently improved the crabs’ immune and antioxidant ability, comparing to other two groups, and the crabs in mix oil group had a better ability of resistance to hypoxia.

    参考文献
    [1] Cheng Y X, Wu X G, Yang X Z, et al. Current trends in hatchery techniques and stock enhancement for Chinese mitten crab, Eriocheir japonica sinensis. Rev Fish Sci, 2008, 16(1/3): 377-386.
    [2] Jin Z W, Zheng Z M, Wu S J, et al. Preliminary study on improvement of pond water quality by bottom aeration. South China Fisheries Science, 2010, 6(6): 20-25.
    [3] Qiu R J, Cheng Y X, Huang X X, et al. Effect of hypoxia on immunological, physiological response, and hepatopancreatic metabolism of juvenile Chinese mitten crab Eriocheir sinensis. Aquaculture International, 2010, 19(2): 283-299.
    [4] Cheng W, Liu C H, Kuo C M. Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture, 2003, 220(1/4): 843-856.
    [5] Mangum C P. Adaptation of the oxygen transport system to hypoxia in the blue crab, Callinectes sapidus. Amer Zool, 1997, 37(6): 604-611.
    [6] Paschke K, Cumillaf J P, Loyola S, et al. Effect of dissolved oxygen level on respiratory metabolism, nutritional physiology, and immune condition of southern king crab Lithodes santolla (Molina, 1782) (Decapoda, Lithodidae). Mar Biol, 2010, 157(1): 7-18.
    [7] Zou E M, Du N S, Lai W. The Effects of severe hypoxia on lactate and glucose concentrations in the blood of the Chinese freshwater crab Eriocheir sinensis (Crustacea: Decapoda). Comp Biochem and Physiol:A, 1996, 114(2): 105-109.
    [8] Chang G L, Wu X G, Cheng Y X, et al. Effect of lipid nutrition on hepatosomatic index and biochemical composition of juvenile Eriocheir sinensis. Oceanolgia et Limnologia Sinica, 2008, 39(3): 276-283.
    [9] Wu X G, Cheng Y X, Sui L Y, et al. Effect of dietary supplementation of phospholipids and highly unsaturated fatty acids on reproductive performance and offspring quality of Chinese mitten crab, Eriocheir sinensis (H. Milne-Edwards), female broodstock. Aquaculture, 2007, 273(4): 602-613.
    [10] Liu K K M, Barrows F T, Hardy R W, et al. Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin, or menhaden oil. Aquaculture, 2004, 238(1/4): 309-328.
    [11] Montero D, Robaina L, Caballero M J, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture, 2005, 248(1/4): 121-134.
    [12] Hu Y, Tan B P, Mai K S, et al. Effects of dietary menhaden oil, soybean oil and soybean lecithin oil at different ratios on growth, body composition and blood chemistry of juvenile Litopenaeus vannamei. Aquacult Int, 2011, 19(3): 459-473.
    [13] Regan M D, Kuchel L J, Huang S S Y, et al. The effect of dietary fish oil and poultry fat replacement with canola oil on swimming performance and metabolic response to hypoxia in stream type spring Chinook salmon parr. Aquaculture, 2010, 308(3/4): 183-189.
    [14] Mercier L, Racotta I S, Yepiz-plascencia G, et al. Effect of diets containing different levels of highly unsaturated fatty acids on physiological and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei (Boone) exposed to handling stress. Aquaculture Research, 2009, 40(16): 1849-1863.
    [15] Hurtado M A, Racotta I S, Civera R, et al. Effect of hypo- and hypersaline conditions on osmolality and Na+/K+-ATPase activity in juvenile shrimp (Litopenaeus vannamei) fed low- and high-HUFA diets. Comparative Biochemistry and Physiology: Part A, 2007, 147(3): 703-710.
    [16] Chim L, Lemaire P, Delaporte M, et al. Could a diet enriched with n-3 highly unsaturated fatty acids be considered a promising way to enhance the immune defences and the resistance of Penaeid prawns to environmental stress? Aquaculture Research, 2001, 32(2): 91-94.
    [17] Hurtado M A, Reza M, Ibarra A M, et al. Arachidonic acid (20: 4n-6) effect on reproduction, immunology, and prostaglandin E2 levels in Crassostrea corteziensis (Hertlein, 1951). Aquaculture, 2009, 294(3/4): 300-305.
    [18] Williams S, ed. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed. Arlington VA: AOAC,1984: 114.
    [19] Folch J, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipids from animal tissues. Biol Chem, 1957, 226(1): 497-509.
    [20] Coutteau P, Sorgeloos P. Intercalibration Exercise on the Qualitative and Quantitative Analysis of Fatty Acids in Artemia and Marine Samples Used in Mariculture. ICES Cooperative Research Reports 211, 1995: 30.
    [21] Goodman L R, Campbell J G. Lethal levels of hypoxia for gulf coast estuarine animals. Mar Biol, 2007, 152(1): 37-42.
    [22] Brown-Peterson N J, Manning C S, Patel V, et al. Effects of cyclic hypoxia on gene expression and reproduction in a grass shrimp, Palaemonetes pugio. Biol Bull, 2008, 214(1): 6-16.
    [23] Johnson B A, Bonaventura C, Bonaventura J. Allosteric modulation of Callinectes sapidus hemocyanin by binding of L-Lactate. Biochemistry, 1984, 23(5): 872-878.
    [24] 徐奇友, 许红, 李婵, 等. 用豆油代替鱼油对虹鳟生长、非特异性免疫和组织酶活性的影响. 大连水产学院学报, 2009, 24(2): 104-108.
    [25] Richard N, Kaushik S, Hrroquet L, et a1. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br Nutr, 2006, 96(2): 299-309.
    [26] 刘玮, 戴年华, 任本根, 等. 不同脂肪源饲料对团头鲂稚鱼生长的影响. 水产学报, 1997, 21(增刊1): 44-48.
    [27] Ng W K, Tee M C, Boey P L. Evaluation of crude palm oil and refined palm olein as dietary lipids in pelleted feeds for a tropical bagrid catfish Mystus nemurus (Cuvier & Valenciennes). Aquacult Res, 2000, 31(4): 337-347.
    [28] 陈国福, 黄倢, 宋晓玲. 对虾免疫机能研究概况. 水产学报, 2004, 28(2): 209-215.
    [29] Montero D, Grasso V, Izquierdo M S, et al. Total substitution of fish oil by vegetable oils in gilthead sea bream (Sparus aurata) diets: Effects on hepatic Mx expression and some immune parameters. Fish Shellfish Immunol, 2007, 24(2): 147-155.
    [30] 赵红霞, 张艳秋, 黄磊, 等. 虾类的免疫系统与免疫防治. 中国兽医杂志, 2003, 39(1): 42-44.
    [31] Chen J H, Mai K S, Ma H M, et al. Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston). Fish Shellfish Immunol, 2007, 22(3): 272-281.
    [32] Xu H G, Ai Q H, Mai K S, et al. Effects of dietary arachidonic acid on growth performance, survival, immune response and tissue fatty acid composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture, 2010, 307(1/2): 75-82.
    [33] 潘鲁青, 金彩霞. 甲壳动物血蓝蛋白研究进展. 水产学报, 2008, 32(3): 484-491.
    [34] 章跃陵, 卓奕明, 朱永飞, 等. 南美白对虾人工感染细菌后肝胰脏中主要变化蛋白的研究. 水产科学, 2005, 24(6): 19-23.
    [35] Baden S P, Pihl L, Rosenberg R. Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster Nephrops norvegicus. Mar Ecol Prog Set, 1990, 67: 141-155.
    [36] Brouwer M, Brown-Peterson N J, Laikin P, et al. Molecular and whole animal responses of grass shrimp, Palaemonetes pugio, exposed to chronic hypoxia. Exp Mar Bio Ecol, 2007, 341(1): 16-31.
    [37] Taylor A C, Spicer J I. Metabolic responses of the prawns Palaemon elegans and P. serratus (Crustacea: Decapoda) to acute hypoxia and anoxia. Mar Biol, 1987, 95(4): 521-530.
    [38] Taylor H H, Paterson B D, Wong R J, et al. Physiology and live transport of lobsters: report from a workshop. Mar Freshw Res, 1997, 48(8): 817-822.
    [39] Lallier F, Truchot J P. Hemolymph oxygen transport during environmental hypoxia in the shore crab, Carcinus maenas. Respiration Physiology, 1989, 77(3): 323-336.
    [40] Rowley A F, Knight J, Lloyd-Evans P, et al. Eicosanoids and their role in immune modulation in fish-a brief overview. Fish Shellfish Immunol, 1995, 5(8): 549-567.
    相似文献
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邱仁杰,成永旭,吴旭干,杨筱珍,王春,杨志刚,佟蕊,赵亚婷.2012.投喂不同油脂饲料对中华绒螯蟹免疫、代谢及耐低氧性能的影响.动物学杂志,47(1):78-87.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-07-15
  • 最后修改日期:2011-11-11
  • 在线发布日期: 2012-02-07