4种鲟鱼养殖亲鱼群体遗传多样性分析
作者:
基金项目:

北京市科委项目(No.Z080005032508019),农业部行业专项(No.201003055-05)


Genetic Diversity of the Reserved Broodstocks in Four Species of Sturgeon
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近年鲟鱼人工繁殖技术促进了鲟鱼养殖业的发展,但在选育初期未对后备亲鱼进行遗传背景分析,为了抑制种质资源退化和防止近交衰退,繁育场需要对现有后备亲鱼进行遗传背景分析。本文利用线粒体控制区(D-loop)部分序列对4种养殖鲟鱼后备亲鱼群体(共120个样本)的遗传多样性进行了分析。研究发现不同种鲟鱼D-loop部分序列长度不同(451~469 bp),种间存在1~18 bp的插入/缺失,种内无插入/缺失位点。每个群体至少包含4个单倍型,序列相似性大于98%。不同单倍型间有4~12个简约信息位点,遗传距离0.002~0.024。核苷酸多样性以史氏鲟(Acipenser schrenckii)最低(π=0.002),小体鲟(A.ruthenus)最高(π=0.010),单倍型多样性则以俄罗斯鲟(A.gueldenstaedtii)最低(H=0.352),西伯利亚鲟(A.baerii)最高(H=0.706)。通过分析认为,4种鲟鱼后备亲鱼群体遗传多样性偏低,建议在利用这4种鲟鱼后备亲鱼进行种质保存和繁殖时要充分注意遗传距离及近交繁殖的影响。

    Abstract:

    Artificial propagation of Sturgeon has promoted the development of sturgeon aqualture in recent years. However, the genetic relationship among reserved broodstocks has not been analyzed. In order to avoid the degradation of germplasm resources and prevent inbreeding despression, the genetic background of reserved broodstocks should be investigated. In this research, partial sequence of mitochondrial control region (D-loop) was used to examine the genetic diversity of reserved broodstocks in four species of sturgeon. Different length of D-loop sequences between 451-469 bp were obtained from a total of 120 samples. There were 1-18 bp interspecific indels, while no intraspecific indels were detected. Each group contained at least four haplotypes which had greater than 98% sequence similarity. There were 4-12 pasimony informative sites between different haplotypes and genetic distance among intraspecific haplotypes varied from 0.002-0.024. The highest nucleotide diversity was presented in Sterlet (Acipenser ruthenus) (π=0.010) while the lowest was in Amur Sturgeon (A.schrenckii) (π=0.002). The highest haplotype diversity was showed in Siberian Sturgeon (A.baerii) (H=0.706) while the lowest was in Russian Sturgeon (A.gueldenstaedtii) (H=0.352). These results indicate that there is a low genetic diversity in the four reserved broodstocks and that inbreeding impact and genetic distance should be seriously considered in the fry production and germplasm conservation of the four species of sturgeon.

    参考文献
    [1] Birstein V J, Bemis W E, Waldman J R. The threatened status of acipenseriform species: a summary. Environmental Biology of Fishes, 1997, 48(1/4): 427-435.
    [2] Zhang S M, Wang D Q, Zhang Y P. Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis. Conservation Genetics, 2003, 4(6): 673-683.
    [3] Jenneckens I, Meyer J N, Debus L, et al. Evidence of mitochondrial DNA clones of Siberian sturgeon, Acipenser baerii, within Russian sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecology Letters, 2000, 3(6): 503-508.
    [4] Ludwig A, Debus L, Jenneckens I. A molecular approach to control the international trade in black caviar. Int Rev Hydrobiol, 2002, 87(5/6): 661-674.
    [5] Ludwig A, Congiu L, Pitra C, et al. Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon. Molecular Ecology, 2003, 12(12): 3253-3264.
    [6] Arefjev V A. Sturgeons hybrids: natural reality and practical prospects. Aquaculture Magazine, 1997, 7(8): 52-58.
    [7] Ludwig A, Arndt U, Lippold S, et al. Tracing the first steps of American sturgeon pioneers in Europe. BMC Evolutionary Biology, 2008, 8(1): 221-256.
    [8] Mims S, Shelton W, Clark J. Steroid-induced sex reversal of paddlefish//Goetz F, Thomas P. Proceedings of the 5th International Symposium on Reproductive Physiology of Fish. Austin, Texas. USA: University of Texas at Austin Press, 1995: 129-130.
    [9] Quattro J M, Greig T W, Coykendall D K, et al. Genetic issues in aquatic species management: the shortnose sturgeon (Acipenser brevirostrum) in the southeastern United States. Conservation Genetics, 2002, 3(2): 155-166.
    [10] Fopp-Bayat D. Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baeri Brandt). Aquaculture, 2010, 305(1/4): 174-177.
    [11] Wang D Q, Zhong L, Wei Q W, et al. Evolution of MHC class I genes in two ancient fish, paddlefish (Polyodon spathula) and Chinese sturgeon (Acipenser sinensis). FEBS Letters, 2010, 584(15): 3331-3339.
    [12] Yue G H, Liew W C, Orban L. The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics, 2006, 7(1): 242-254.
    [13] Purdue J R, Oleksyk T K, Smith M H. Independent occurrences of multiple repeats in the control region of mitochondrial DNA of white-tailed deer. Journal of Heredity, 2006, 97(3): 235-243.
    [14] Brown W M. Molecular Evolutionary Genetics. New York: Plenum Publishing Corporation, 1985: 95-130.
    [15] Woznicki P, Jankun M, Luczynski M. Chromosome polymorphism in Salmo trutta morpha lacustris from Poland, Wdzydze Lake population: variation in the short arm length of chromosome eleven. Aquatic Sciences-Research Across Boundaries, 1998, 60(4): 367-375.
    [16] van Eenennaam A L, van Eenennaam J P, Medrano J F, et al. Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon (Acipenser transmontanus Richardson). Aquaculture, 1996,147(3/4): 177-189.
    [17] Lee W J, Conroy J, Howell W H, et al. Structure and evolution of teleost mitochondrial control regions. Journal of Molecular Evolution, 1995, 41(1): 54-66.
    [18] Fopp-Bayat D. Inheritance of microsatellite loci in polyploid Siberian sturgeon (Acipenser baeri Brandt) based on uniparental haploids. Aquaculture Research, 2008, 39(16): 1787-1792.
    [19] Saber M H, Noveiri S B, Pourkazemi M, et al. Induction of gynogenesis in stellate sturgeon (Acipenser stellatus Pallas, 1771) and its verification using microsatellite markers. Aquaculture Research, 2008, 39(14): 1483-1487.
    [20] Mcquown E C, Sloss B L, Sheehan R J, et al. Microsatellite analysis of genetic variation in sturgeon: new primer sequences for Scaphirhynchus and Acipenser. Transactions of the American Fisheries Society, 2000, 129(6): 1380-1388.
    [21] Timoshkina N N, Barmintseva A E, Usatov A V, et al. Intraspecific genetic polymorphism of Russian sturgeon Acipenser gueldenstaedtii. Russian Journal of Genetics, 2009, 45(9): 1098-1106.
    [22] Börk K, Drauch A, Israel J A, et al. Development of new microsatellite primers for green and white sturgeon. Conservation Genetics, 2008, 9(4): 973-979.
    [23] Verheyen E, Salzburger W, Snoeks J, et al. Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science, 2003, 300(5617): 325-329.
    [24] 王巍, 朱华, 胡红霞, 等. 五种鲟鱼线粒体控制区异质性和系统发育分析. 动物学研究, 2009, 30(5): 487-496.
    [25] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2. 0. Bioinformatics, 2007, 23(21): 2947-2948.
    [26] Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 1999, 41: 95-98.
    [27] Librado P, Rozas J. DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451-1452.
    [28] Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press, 1987.
    [29] Kumar S, Nei M, Dudley J, et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 2008, 9(4): 299-306.
    [30] Bandelt H J, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 1999, 16(1): 37-48.
    [31] Krieger J, Fuerst P A. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Molecular Biology and Evolution, 2002,19(6): 891-897.
    [32] Donaldson K A, Wilson R R Jr. Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Molecular Phylogenetics and Evolution, 1999, 13(1): 208-213.
    [33] Billard R, Lecointre G. Biology and conservation of sturgeon and paddlefish. Reviews in Fish Biology and Fisheries, 2000, 10(4): 355-392.
    [34] Doukakis P, Birstein V J, Ruban G I, et al. Molecular genetic analysis among subspecies of two Eurasian sturgeon species, Acipenserbaerii and A. stellatus. Molecular Ecology, 1999, 8(S1): 117-127.
    [35] 牛翠娟, 胡红霞, 罗静, 等. 史氏鲟和达氏鳇养殖亲鱼群体遗传多样性分析. 水产学报, 2010, 34(12): 1795-1799.
    [36] Timoshkina N N, Vodolazhskii D I, Usatov A V. Molecular-genetic markers in studies of intra-and interspecies polymorphism in sturgeon (Acipenseriformes). Russian Journal of Genetics: Applied Research, 2011, 1(2): 160-171.
    [37] Alpers D L, van Vuuren B J, Arctander P, et al. Population genetics of the roan antelope (Hippotragusequinus) with suggestions for conservation. Molecular Ecology, 2004, 13(7): 1771-1784.
    [38] Grunwald C, Maceda L, Waldman J, et al. Conservation of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: delineation of stock structure and distinct population segments. Conservation Genetics,2008,9(5):1111-1124.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王巍,朱华,胡红霞.2012.4种鲟鱼养殖亲鱼群体遗传多样性分析.动物学杂志,47(1):105-111.

复制
文章指标
  • 点击次数:3043
  • 下载次数: 3011
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-09-05
  • 最后修改日期:2011-11-12
  • 在线发布日期: 2012-02-07